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Abstract. The paper deals with the study of the coherent risk measure, which
we call Weighted V@QR. 1t is a risk measure of the form

pu(X) = /[0 | TVERA (X)),

where p is a probability measure on [0, 1] and TV@R stands for Tail VQR.

After investigating some basic properties of this risk measure, we apply the
obtained results to the financial problems of pricing, optimization, and capital al-
location. It turns out that, under some regularity conditions on u, Weighted V@R
possesses some nice properties that are not shared by Tail VQR. To put it briefly,
Weighted VAR is “smoother” than Tail VQR. This allows one to say that Weighted
V@R is one of the most important classes (or maybe the most important class) of
coherent risk measures.
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1 Introduction

Historic overview. The theory of coherent risk measures is a very new, important,
and rapidly evolving branch of the modern financial mathematics. This concept was
introduced by Artzner, Delbaen, Eber, and Heath [4], [5]. Since then, many papers on
the topic have followed; surveys of the modern state of the theory are given in [21], [25;
Ch. 4], and [36]. In some sources theory of coherent risk measures and related topics is
already called the “third revolution in finance” (see [39]).

A very important class of coherent risk measures is given by Tail V@R (the terms
Average V@R, Conditional V@R, and Expected Shortfall are also used). Tail V@R of
order A € [0,1] is a map py : L™ — R (we have a fixed probability space (2, F,P))
defined by

pa(X) = — inf EqX,

where D, is the set of probability measures Q that are absolutely continuous with respect
to P with % < A7'. (From the financial point of view, X is the discounted cash flow
of some financial transaction.) The importance of Tail V@R is seen from a result of
Kusuoka [28], who proved that p, is the smallest law invariant coherent risk measure
that dominates V@R, (we recall the precise formulation in Section 2). This suggests an
opinion that Tail V@R is one of the best coherent risk measures. For more information
on Tail V@R, see [3], [20; Sect. 6], [21; Sect. 7], [25; Sect. 4.4], [36; Sect. 1.3].

However, there exists a risk measure, which is, in our opinion, much better than Tail

V@R. It is given by
pu(X) = /[ X)), (1)
0,1

where g is a probability measure on [0,1]. We call this risk measure Weighted V@R
and its study is the goal of this paper. First of all, let us give two arguments in favor of
Weighted V@R over Tail VQR:

e (Financial argument) Tail V@R of order A takes into consideration only the A-tail of
the distribution of X ; thus, two distributions with the same A-tail will be assessed
by this measure in the same way, although one of them might be clearly better than
the other (see Figure 1). On the other hand, if the right endpoint of supp u is 1,
then p, depends on the whole distribution of X.

e (Mathematical argument) If the weighting measure p satisfies the condition
supp ¢ = [0,1], then p, possesses some nice properties that are not shared by p,.
In particular, various optimization problems have a unique solution (see Section 5).

The paper [23] provides some further financial arguments in favor of Weighted V@R.

It might seem rather surprising that the risk measure, which we call here Weighted
V@R, was considered by actuaries already in the early 90s, i.e. before the papers of
Artzner, Delbaen, Eber, and Heath; see, for example, [22], [40] (see also the paper [41],
which appeared at the same time as [4]). These papers are related to the object termed
distorted measure. This is a functional on random variables defined as

p(X) :/ \II(F(:E))d:E+/OOO(\II(F(z))—l)dx, (1.2)

— o0

where U : [0,1] — [0, 1] is an increasing concave function with the properties ¥(0) = 0,
¥(1) =1 and F is the distribution function of X. It turns out that the class of these
functionals (with different W) is exactly the class of Weighted V@Rs (with different p).
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Figure 1. These two distributions have the same A-tails (g is the
A-quantile), so that TVQR) coincides on them. However, the distribu-
tion at the right stochastically dominates the distribution at the left.

For risk measures on L, this equivalence can be found in [25; Th. 4.64] or [36; Th. 1.51];
for risk measures on L°, this equivalence is proved in Section 3 of this paper.

The first appearance of p, in the framework of coherent risk measures is in the paper
of Kusuoka [28]. He proved that any law invariant comonotonic coherent risk measure is
of this form. In the same paper, he proved that any law invariant risk measure has the
form sup ,con pu, where M is a set of probability measures on [0, 1] (we recall the precise
formulations in Section 2).

Some further considerations of p, can be found in the papers of Acerbi [1], [2], who
uses the term spectral risk measures for this class.

Furthermore, Carlier and Dana [11] provided a representation of the determining set
of Weighted V@R (the definition of this notion is given below). This representation is
recalled in Section 4.

Structure of the paper. According to the classical definition, a coherent risk mea-
sure is defined on bounded random variables. However, for financial applications it is
almost necessary to extend this notion to the space of all random variables. Indeed, most
distributions used in theory (for example, the lognormal one) are unbounded. In this
paper, we consider coherent risk measures defined on the space L° of all random vari-
ables. This is done as follows. According to the basic representation theorem, a functional
p: L>* — R is a coherent risk measure if and only if it admits a representation

p(X) = —érelg EX, XelL (1.3)
with some set D of probability measures that are absolutely continuous with respect to P.
For finite €2, this was proved in [5]; for arbitrary 2, this was proved by Delbaen [20]; in
the latter case, an additional continuity assumption called the Fatou property should be
imposed on p. Following [16], [17], we take representation (1.3) with L> replaced by L°
as the definition of a coherent risk measure on L°. The expectation EqX is understood
as Eq Xt — EQX ™ with the convention co — oo = —oc so that EqX is well defined for
any Q and X . Thus, p takes on values in the extended real line [—oc, o¢].

Section 2 contains some basic definitions as well as known results on Tail V@R and
Weighted VQR.

In Section 3, we provide two representations of Weighted VQR. These are the exten-
sions of (1.1) and (1.2) to L°.

Clearly, different sets D might define the same coherent risk measure. However, among
all the sets that define the same risk measure p there exists the largest one (it has the
form D = {Q < P: EQX > —p(X) for any X}). We call it the determining set of p.
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Finding the structure of this set is important. For example, in [16; Sect. 2], we considered
the No Good Deals pricing technique based on coherent risk measures. According to this
technique, the interval of fair prices of a contingent claim F' is {EqF : Q € DNR}, where
R is the set of risk-neutral measures and D is the determining set of a risk measure p,
which serves as an input to this technique. Furthermore, the solutions of various other
financial problems given in [16], [17] are expressed through the determining set. In Sec-
tion 4, we provide two representations of the determining set of Weighted V@R, both of
which are given in different terms than the one in [11].
The main result of Section 5 is that

Pu(X + Y) < PM(X) + PM(Y)

provided that supp u = [0, 1] and X, Y are not comonotone (in particular, the latter con-
dition is satisfied if the distribution of (X,Y") has a joint density). We call this the strict
diversification property. This property is very important from the viewpoint of finan-
cial mathematics because it leads to the uniqueness of a solution of various optimization
problems based on coherent risk measures.

In [16], we introduced the notion of an extreme measure. The class of extreme measures
for a coherent risk measure p and a random variable X is defined as

X,(X) = {Q €D :EqX = inf EgX € (—oo,oo)},

where D is the determining set of p. This notion was found to be very convenient
and important. In particular, the solutions of several optimality pricing problems, the
solution of the equilibrium pricing problem, and the solution of the capital allocation
problem are expressed through extreme measures (see [16], [17]). Moreover, the risk
contribution introduced in [16] is expressed through extreme measures. In general, the
set X,(X) can contain more than one point. However, as shown in Section 6, for p = p,
with £({0}) = 0, there exists a unique element of X, that is the smallest in the convex
order. We call it the minimal extreme measure. This notion is of importance for financial
mathematics as it allows one to select a (unique) distinguished solution of the problems
like capital allocation or optimality pricing, which possesses some nice properties. We call
it the central solution.

One of the most important goals of the modern financial mathematics is to narrow the
No Arbitrage price intervals of contingent claims as they are known to be unacceptably
wide in most incomplete models (see, for example, the discussion in [19; Sect. 5]). Several
ways to do that have been proposed in the literature. One of them consists in considering
actively traded derivatives as basic assets. In particular, a popular model is based on
treating as basic assets the European call options on a fixed asset with a fixed maturity
and different strike prices. The corresponding model was first studied by Breeden and
Litzenberger [9] and Banz and Miller [7]. A literature review of this model is given in [26].
Let us also mention the paper [14; Sect. 6], in which this model was analyzed from the
general viewpoint of fundamental theorems of asset pricing.

Recently, another (very promising) way to narrow fair price intervals has been pro-
posed. It is known as the No Good Deals pricing. This technique was first considered
by Cochrane and Sad-Requejo [18] and Bernardo and Ledoit [8]. An important feature
of this theory is that there exists no canonical definition of a good deal (in particular,
[18] and [8] employ different definitions). Carr, Geman, and Madan [12] (see also the
review paper [13]) and Jaschke and Kiichler [27] proposed variants of No Good Deals
pricing based on coherent risk measures. These techniques were further developed in [16]
and [38].



In Section 7, we combine the two ways of narrowing fair price intervals described
above. Namely, we apply the No Good Deals pricing technique from [16] to the model
with European options as basic assets. This leads to the “double reduction” of fair price
intervals. The risk measure employed is Weighted VQR. In fact, the results of Section 7
provide a description of risk-neutral densities that price correctly traded call options and
are “not far” from the real-world density, the “distance” being measured with the help of a
coherent risk measure. Let us remark that the study of the interplay between risk-neutral
and real-world densities is a very popular topic of the modern financial mathematics (see,
in particular, the papers [6], [10], [29]).

Section 8 deals with the Markowitz-type optimization problem of the form

{EPX — max, (1.4)

Xed pX)<e

where p is a coherent risk measure, ¢ > 0, and A is the set of possible discounted
cash flows that can be obtained by using various trading strategies in the model under
consideration. Let us remark that in [31] Markowitz proposed to consider an alterna-
tive of his mean-variance optimization problem with variance replaced by semivariance
S(X) = E((X — EX)™)? (clearly, variance is not a good measure of risk because it pun-
ishes profits in the same way as losses). In (1.4), the risk is measured in a coherent way.
Let us remark that problems of type (1.4) were considered in [2], [17], [32], [33].

Here we provide a solution of (1.4) for the case, where p is Weighted V@R and the
model is complete, i.e. A = {X € LY(Q) : EqX = 0}, where Q is a given measure
(the unique risk-neutral measure). Classical examples of a complete model are the Black-
Scholes model and the Cox-Ross-Rubinstein model. One more example is the option-
based model considered in Section 7 (if we assume that the options on a basic asset with
a fixed maturity and all the positive strikes are traded, then this model is complete). Our
solution shows that the optimal strategy typically consists in buying binary options with
the payoff (% < c*) , where ¢, is the optimal threshold explicitly calculated in Section 8
(see Figure 5).

2 Basic Definitions

Let (2, F,P) be a probability space. It will be convenient for us to deal not with coherent
risk measures, but with their opposites called coherent utility functions (this enables one
to get rid of numerous minus signs).

Definition 2.1. A coherent utility function on L*° is a map u : L>® — R with the
properties:

(a) (Superadditivity) u(X +Y) > u(X) + u(Y);

(b) (Monotonicity) If X <Y, then u(X) < u(Y);

(c) (Positive homogeneity) u(AX) = Au(X) for A € R ;

(d) (Translation invariance) u(X +m) = u(X) +m for m € R;

(e) (Fatou property) If | X,| <1, X, % X, then u(X)>limsup, u(X,).

The corresponding coherent risk measure is p(X) = —u(X).

The theorem below was established in [5] for the case of a finite Q (in this case
the axiom (e) is not needed) and in [20] for the general case. We denote by P the set of



probability measures on F that are absolutely continuous with respect to P. Throughout
the paper, we identify measures from P (these are typically denoted by Q) with their
densities with respect to P (these are typically denoted by 7).

Theorem 2.2. A function u satisfies conditions (a)—(e) if and only if there exists a
nonempty set D C P such that

X)=inf EQX, X € L*. 2.1

u(X)= X, X ¢ (2.)

Now, we use representation (2.1) to extend coherent utility functions to the space L°
of all random variables.

Definition 2.3. A coherent utility function on L° isamap u : L® — [—o0, 00] defined
as
X) = inf EqX, X e IL° 2.2
u(X) = inf Eq (2.2)
where D is a nonempty subset of P and EqX is understood as EQ X+ — EqX ™~ with the
convention 0o — o0 = —00.

Clearly, a set D, for which representations (2.1) and (2.2) are true, is not unique.
However, there exists the largest such set given by {Q € P : EqX > u(X) for any X}.

Definition 2.4. We will call the largest set, for which (2.1) (resp., (2.2)) is true, the
determining set of u.

Remarks. (i) Clearly, the determining set is convex. For coherent utility functions
on L>, it is also L'-closed. However, for coherent utility functions on L°, it is not
necessarily L!-closed. As an example, take a positive unbounded random variable X
such that P(Xp = 0) > 0 and consider Dy = {Q € P : EqXy = 1}. Clearly,
the determining set D of the coherent utility function u(X) = infqep, EQX satisfies
Dy CDC{Qe€P:EqXy > 1}. On the other hand, the L'-closure of Dy contains a
measure Qp concentrated on {X, = 0}.

(ii) Let D be an L'-closed convex subset of P. Define a coherent utility function u
by (2.1) or (2.2). Then D is the determining set of u. Indeed, assume that the determining
set D is greater than D, i.e. there exists Qy € 15\1) Then, by the Hahn-Banach theorem,
we can find Xy € L™ such that Eq, X, < infqep EqQX, which is a contradiction.

Now, we recall some basic facts related to Tail V@R. The next definition applies both
to L>® and to L°.

Definition 2.5. Tail V@R is the risk measure corresponding to the coherent utility
function
U,\(X) = QlengA EQX,
where A € [0,1] and
dQ

= S <\
D, {QGP dP_)\ }

Clearly, uo(X) = essinf, X (w). The following well-known proposition provides two
representations of Tail V@R with A > 0. Throughout the paper, we denote by ¢,(X)
the right A-quantile of X, i.e. ¢)(X) = inf{z : P(X < z) > A} (we use the convention
inf () = +o00).



Proposition 2.6. (i) Let A € (0,1], X € L°. Then, for any Z* € Dy such that

7 — {)‘1 on {X < q/\(X)}7 (23)
0 on {X > q\(X)},

we have uy(X) = EpXZ*. Conversely, if ux(X) > —oo, then any Z* € Dy such that
ux(X) = Ep X Z*, should satisfy (2.3).
(ii) Let X € (0,1], X € L°. Then

un(X) = )\1/ 2Q(dz) + cqr(X),
(=00,qx (X))

where Q = Lawp X and ¢ =1 — A7'Q((—o0, ¢x(X))).

Proof. (i) We will assume that Ep X~ < oo and A € (0,1) (the other cases are
analyzed trivially). Without loss of generality, ¢,(X) = 0. Then, for any Z € D,,

XZ-XZ"=X(Z-XYHI(X<0)+XZI(X >0)>0.

Furthermore, the a.s. inequality here is possible only if Z satisfies (2.3).
(ii) This is an immediate consequence of (i). O

The importance of Tail VQR is seen from the result of Kusuoka [28], which is stated
below (its proof can also be found in [25; Th. 4.61] or [36; Th. 1.48]). Recall that a coherent
utility function u is called law invariant if u(X) depends only on the distribution of X.

Theorem 2.7. Assume that (2, F,P) is atomless. Let A € [0,1] and u be a law
invariant coherent utility function on L*° such that u < qx. Then u < uy.

We now introduce the basic object of the paper.

Definition 2.8. (i) Weighted V@R on L™ is the risk measure corresponding to the
coherent utility function

0 (X) = /[ JOOua@, X €1,

where 4 is a probability measure on [0, 1].
(ii) Weighted V@R on L° is the risk measure corresponding to the coherent utility
function

— 0
uu(X) = Qlélgu EX, X el

where D, is the determining set of u, on L.
Thus, we have used the following scheme to define u, on L°:
uyon L* — w,onL* — D, — u#onLO.

Let us now recall two results of Kusuoka [28] (the proofs can also be found in [25;
Cor. 4.58, Th. 4.87] or [36; Cor. 1.45, Th. 1.58]), which show the importance of Weighted
V@R in view of the law invariance property. Recall that random variables X and Y are
comonotone if (X (wy) — X (w1))(Y(w2) — Y(wy)) > 0 for P x P-a.e. wy,wy; a coherent
utility function w is comonotonic if u(X +Y) = u(X) + u(Y) whenever X and Y are
comonotone.



Theorem 2.9. (i) On an atomless probability space, a coherent utility function u
on L* is law invariant and comonotonic if and only if it has the form u = u, with some
probability measure ji.

(ii) On an atomless probability space, a coherent utility function u on L™ is law
invariant if and only if it has the form u = inf ,con u,, with some collection M of probability
measures on [0, 1].

Remark. It is easy to check that Tail V@R is in fact a weighted average of V@Rs:
uy(X) = fo’\ ¢s(X)ds. Hence, Weighted V@R is also a weighted average of V@Rs, which
supports the term we are using (otherwise, we should have called it “Weighted Tail V@QR”).

3 Representation of Weighted VQR
For X € L” and ) € (0,1], we set

A7 on {X < g\ (X))},
ZX(X)=<¢c on {X =q\(X)}, (3.1)
0 on {X > q\(X)},

where ¢ € [0, \7!] is such that EpZ; = 1.

Lemma 3.1. Let A € (0,1], X € L° and f be an increasing function. Then
ur(f(X)) = Bp f(X)Z3(X).

Proof. Without loss of generality, ¢\(X) = 0 and f(0) = 0. Then, for any Z € D,,
we can write

FX)Z = F(X)Z4(X) = F(X)(Z = A )I(X < 0) + F(X)ZI(X > 0) > 0.
Theorem 3.2. (i) Suppose that p({0}) = 0. Then, for X € L° we have

u,(X) =Ep X7 (X), where Z;(X) = f(U,l] ZX(X)p(dA).
(ii) We have

uM(X):/[Ul] wn(X)u(d), X e Lo, (3.2)

where f[o 1 FN)p(dA) is understood as f[o 1 frN)p(dX) — f[o 1 f=(N)p(dX) with the con-

vention 0o — 00 = —00.

Proof. (i) Any Z € D, can be represented as f(o 1 Zu(d\) with Z, € D)y (see
Theorem 4.4 below). Due to Lemma 3.1,

Ep(va/\n)Z:/ Ep(m V X An)Zy]u(d))

(0,1]

2/ Ep(m v X An) Zi(X)]u(dA) = Ep(m v X An)Z,(X), mn € Z.
(0,1]

Obviously,

EpXZ(X) = nll)rgo ml_i)rgoo Er(m VvV X An)Z;(X) (3.3)
and the same is true for Z(X) replaced by Z. Thus, EpXZ > EpXZ;(X), so that
uu(X) = Ep X Z5(X).



(ii) Suppose first that p({0}) = 0. Due to Lemma 3.1,

EP(mVXAn)z;(X):/ us(mV X An)u(d)), m.n € Z.

(0,1]

Obviously,
/ uy(X)p(dA) = lim  lim ux(m vV X An)u(dX).
(0,1]

Combining this with (3.3) and the result of (i), we get (3.2).

Now, let u({0}) =a > 0. Then p = ady+ (1 — a)i and it follows from Theorem 4.4
that D, = aD;,+ (1 —a)Dj. If X is not bounded below, then, clearly, both sides of (3.2)
are equal to —oo. If X is bounded below, then wu,(X) = auo(X) + (1 — a)uz(X) and
equality (3.2) for p follows from (3.2) for z, which was proved above. O

In order to provide another representation of Weighted V@R, let us consider the
function

Uy(z) =

u({0}) + / /H A ANy, € (0,1], ",
0,

xz = 0.

Clearly, ¥, is increasing, concave, ¥,(0) =0, and ¥, (1) = 1. In fact, (3.4) establishes a
one-to-one correspondence between functions with these properties and probability mea-
sures p on [0, 1] (for details, see [25; Lem. 4.63] or [36; Lem. 1.50]). Further properties
of ¥, are:

U, (0+) = p({0}),  WL(0+) = /(0 : ATh(d), L (1=) = p({1}).

#({0})

Figure 2. The structure of ¥,
Theorem 3.3. For X € LY,

w(X) == [ W(F@)ds+ / (1= 0, (F@)dr, (3.5)

—0o0

where F is the distribution function of X, and we use the convention oo — 00 = —00.
Proof. It is seen from (3.2) that

u,(X) = lim lim w,(X),

n—oC m——0oo

9



where X,,,, = mV X An. Similar limit relation holds for the right-hand side of (3.5) (one
should consider the distribution function F,, of X,,,). For bounded X, the statement
of the theorem is known (see [25; Th. 4.64] or [36; Th. 1.51]), so that the result for general
X is obtained by passing on to the limit. a

Remarks. (i) Some important regularity properties of u can be expressed in terms
of ¥,. For example, ¥,(04+) = 0 if and only if p({0}) = 0 (this condition will be
important in Sections 6 and 7; note also that this condition is equivalent to the lower
semi-continuity of u, on L*); ¥, is strictly concave if and only if supp p = [0, 1] (this
condition will be important in Sections 5 and 8).

(ii) Integrating (3.5) by parts, we get

0(X) = [, (F(@)) = Ee.

where Y is a random variable with the distribution function ¥, o F'.

4 Representation of the Determining Set

We begin with three auxiliary lemmas. The notation p < v means that v dominates p
in the monotone order, i.e. u((—o0,z]) > v((—o0,z]) for any z.

Lemma 4.1. If p <X v, then D, O D,.

Proof. There exist random variables £, n on some filtered probability space (ﬁ, F, IS)
such that Law¢{ = pu, Lawn = v, and £ < n as. (see [37; § 1.A]). We can write
u,(X) = Es0(§), uu(X) = Esp(n), where p(\) = ux(X). As ¢ is increasing, u, < u,.
Clearly, this implies that D, D D, . O

Lemma 4.2. If u, tend to p weakly and p, < pu, then D, =), Dy, -

Proof. Suppose that there exists Qo € (), D, \D,- As D, is L'-closed, we can apply
the Hahn-Banach theorem, which yields X, € L* such that Eq,X¢ < infqep, EqXo.
Thus, sup,, u,,(Xo) < Eq,Xo < u,(Xp). On the other hand, u,, (Xo) — u,(X,) since
ux(Xp) is continuous in A. The obtained contradiction yields the inclusion D, 2 (1, D, -
The reverse inclusion follows from the previous lemma. O

Lemma 4.3. Let u = 25:1%5Am where Ay > --- > Ay > 0. Then
D, =N a,D,,.

Proof. With no loss of generality, Ay = 0. Denote ZN a,D,, by D. Clearly,

n=1
D is convex. It is seen from Proposition 2.6 (i) that for any X € L*™ the minimum

of expectations Ep X7 over Z € D := Ziv:_ll a,D, is attained. By the James theorem

(see [24]), D is weakly compact. We have D = D + ayP, which is the sum of a convex
weakly compact set and a convex weakly closed set. An application of the Hahn-Banach
theorem shows that D is weakly closed. As D is convex, another application of the
Hahn-Banach theorem shows that it is L'-closed.

Obviously, u,(X) = infqep EQX for any X € L*°. Taking into account Remark (ii)
following Definition 2.4, we get D, = D. O

10



Theorem 4.4. We have
D, = {/ Zy(dN) © Z (A w) is jointly measurable
[0,1]
and Z, € D, for any A € [0, 1]}

Proof. Denote the right-hand side of (4.1) by D. Set

(L) SR (= EAE

Due to Lemma 4.3, D C D, , and by Lemma 4.2, D C D,,.
Let us prove the reverse inclusion. Clearly, D is convex. Arguing in the same way as
in the previous proof, we conclude that D is L'-closed. Take

po=n([o )+ (5 o me

Due to Lemma 4.3, D,,, C D, and therefore, u,, > u, where u(X) = infqep EQX. As
Uy, (X) = u,(X) for any X € L™, we get u, > u on L*. Employing the Hahn-Banach
argument, we get D, C D. O

Now, we describe another representation of D,, which was obtained by Carlier and
Dana [11] (the proof can also be found in [25; Th. 4.73] or [36; Th. 1.53]).

Theorem 4.5. We have
D,={QeP:Q(A) <¥,(P(A)) for any A € F}

1
:{ZeLO:Zzo, EPZ:l,/ 05(Z)ds < U, (x) VmG[O,l]},

1—x

where qs is the s-quantile and ¥, is given by (3.4).

For the needs of Sections 7 and 8, we will now provide one more representation of D,,.
Let us consider the conjugate to the function ¥,:

D, (x) = sup [V,(y) —zy], ze€R;.
y€[0,1]

Clearly, ®, is decreasing, convex, and has the properties

Oy(x) =1—2z, x<p({1}),
Q,(x) >1—z, x> p({1}),

Ba) > u((0). o< [Nl

(0,1]
%) = (0D, w2 [ A,
lim ®,(x) = u({0}),
Furthermore,

U, () = yieriﬂ[d)#(y) +azy], x € (0,1].
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1—p({1})

#({0})

u(l{l}) Joou )\I‘ldp z
Figure 3. The structure of @,
Theorem 4.6. We have
D,={Z€eLl’:Z>0,EpZ=1, and Ep(Z — z)" < ®,(x) Vz € [0,1]}. (4.2)

Proof. Let Z € D,,. Take v € Ry and set y = P(Z > z). Using Theorem 4.5, we get

Ep(Z — )" = /: ¢s(Z2)ds —xy < WU, (y) — 2y < @,(x).

Now, let Z belong to the right-hand side of (4.2). Take x > 0 and set y = ¢;_,(Z).
For y' > y, we have

Er(Z —y)"  —E(Z—y)" > (y—y)P(Z>y) > (y — )z,
while for iy’ < y, we have

Er(Z —y)" —Ee(Z—y)" 2 (y—¥)P(Z2>y) > (y - ¢)2.

Thus,
1
/ qs(Z)ds =Ep(Z —y)" +xy = inf [Ep(Z — )" + 29/]
1-z y'ERy
< dnf [@,(y) + 2y = ¥, (2).
/SIS
By Theorem 4.5, Z € D,,. a

5 Strict Diversification and Optimization
Let us introduce the notation
L,={X e L°:u,(X) > —oco and u,(—X) > —oco}.

For more information on the L!-spaces related to coherent risk measures, see [16; Sub-
sect. 2.2].

Theorem 5.1. Suppose that supp = [0,1]. For X,Y € L}“ we have
U (X +Y) > u,(X) +u,(Y) (5.1)

iof and only if X and 'Y are not comonotone.

12



Proof. The “only if” part for bounded X and Y is a consequence of Theorem 2.9 (i).
The statement for unbounded X and Y is obtained by passing on to the limit with the
help of the representation

Ll = {X € L%: lim sup Eq|X|I(|X| > n) = 0},
n—=0QeD,
which was proved in [16; Subsect. 2.2].

Let us prove the “if” part. Suppose that (5.1) is not true. Combining repre-
sentation (3.2) with the property u (X +Y) > uy(X) + ux(Y), we conclude that
uy(X+Y) = un(X)4+up(Y) for p-a.e. A €[0,1]. As supp u = [0, 1] and the functions uy
are continuous in A, we get uy(X +Y) = uy(X) + uy(Y) for any A € [0,1]. In view of
Proposition 2.6 (i), for any A € (0, 1], there exists Z5 € D, such that Ep X 75 = u,(X)
and EpY Z5 = u,(Y). It is seen from Proposition 2.6 (i) that this is possible only if

P(X <q}\(X)7 Y>q/\(Y)) :07 A€ (Oa]-]a

P(X > (X), Y < (V) =0, e (0,1].
From this it is easy to deduce that P((X,Y) € f((0,1])) = 1, where
F(A) = (gx(X),qr(Y)). Thus, X and Y are comonotone. O

Remark. Without the condition supp pu = [0, 1], the theorem does not hold. In par-
ticular, it does not hold for Tail VQR. Let us remark that the problem to provide a
corresponding example as well as the problem to prove (5.1) for independent X and Y
were proposed at the Fourth Kolmogorov Students’ Competition on Probability Theory
(see [15]).

Property (5.1) can be called the strict diversification property. It holds, in particu-
lar, if X and Y are independent or if X and Y have a joint density (with respect to
the Lebesgue measure). The strict diversification property leads to the uniqueness of
a solution of several optimization problems based on coherent risk measures that were
considered in [17]. Let us briefly describe two of them.

Let Sy € R? be the vector of initial prices of several assets and .S; be the d-dimensional
random vector of their terminal discounted prices. Let H C R? be a convex cone of
possible trading strategies, so that the discounted cash flow of a strategy h € H is
(h,S1 — Sp). The problem is

Ep(h, S; — Sy) — max, (5.2)
hGH, p((h,51—50>) <eg, ‘

where p is a coherent risk measure and ¢ > 0 (this problem is a particular case of (1.4)).
In [17; Subsect. 2.2], we presented a geometric solution of this problem. Here we give a
sufficient condition for the uniqueness.

Corollary 5.2. Let v = u, with suppu = [0,1]. Suppose that each component
of S1 belongs to L}L, S1 has a density with respect to the Lebesgue measure, and
sup Ep(h, S1 — Sy) < 0o, where sup is taken over h € H such that p({h,S; — Sy)) < c.
Then a solution of (5.2) (if it exists) is unique.

Proof. Let h,, h, be different solutions. By Theorem 5.1, h = (h, + h’)/2 satisfies
p({(h,S1 — Sy)) < c. Taking (1 +¢e)h with a small € > 0, we get a strategy that performs
better than h,, h.. O

13



Remark. Without the assumption supp u = [0, 1], the statement above is not true
(see [17; Subsect. 2.2]).

Consider now a single-agent optimization problem. Thus, in addition to the objects
introduced above, we have a random variable W, which means the current endowment of
some agent. Consider the problem

w(W + (h, S; — So)) ——, max. (5.3)

In [17; Subsect. 2.5], we gave a geometric solution of this problem. Theorem 5.1 yields

Corollary 5.3. Let u = u, with supp pn = [0, 1]. Suppose that each component of S
belongs to L}“ S1 has a density with respect to the Lebesque measure, W & L}“ and
suppem Uu(W + (h, S1 — So)) < 0co. Then a solution of (5.3) (if it exists) is unique.

6 Minimal Extreme Measure and Capital Allocation
The following definition was introduced in [16].

Definition 6.1. Let u be a coherent utility function on LY with the determining
set D. Let X € L°. We call a measure Q € D an estreme measure for X if
EX = u(X) € (—o0, 0).

The set of extreme measures for u = u, will be denoted by X},(X).

It is seen from Theorem 3.2 (i) that A, (X) # () provided that x({0}) =0 and X € L.

Proposition 6.2. Suppose that p({0}) = 0 and X € L,. Then an element
Z = f(0,1] Z\p(dX) € D, (here we use the representation of D, provided by Theorem 4.4)
belongs to X,,(X) if and only if

7 {)\‘1 a.e. on {X < (X))},
0 a.e. on {X > q\(X)}

for p-a.e. M.

Proof. For Z = f(o j Zam(dA) € D, we have

EpXZ = lim lim Ep(mV X An)Z

n—oo m——0o0

= lim lim [Ep(m V X An)Z)|u(dN)

n—00 M——00 (0,1] (61)
(0,1]

The inclusion X € L;lt implies that the function A — Ep X Z) is p-integrable. An appli-
cation of Proposition 2.6 (i) completes the proof. O

It is seen from the above proposition that if X has a continuous distribution, then
X, (X) consists of a unique element Z = ¢g(X), where

g(x) = / Atu(d)), z€R (6.2)
[F(2),1]
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and F' denotes the distribution function of X.

If Law X has atoms, then, clearly, X,(X) need not be a singleton. However, it turns
out that there exists a minimal element of X),(X) with respect to the convex stochastic
order. (For other applications of this order in financial mathematics, see [30], [34], [35].)

Theorem 6.3. Suppose that p({0}) =0 and X € L,,. Let

7,(X) = /( | ZOm@),

where Z3(X) is defined by (3.1). Then, for any Z € X,(X) and any convexr function
fiRy = Ry, we have Ep f(Z,(X)) < Epf(Z). Moreover, Z;(X) is the unique element
of X,(X) with this property.

Proof. Take an arbitrary Z = f(o,u Zyp(dX) € X,(X). It follows from Proposition 6.2
that Z3(X) = Ep(Zy | X) for p-a.e. A\. By Fubini’s theorem, Z:(X) = Ep(Z | X). An
application of Jensen’s inequality yields the first statement.

Now, suppose that there exists another minimal (in the convex order) element Z’ of
X, (X). Then 7 = (Z:(X)+Z")/2 belongs to X,(X) and, for a strictly convex function

£ with a linear growth, we get Epf(Z) < Epf(Z;(X)), which is a contradiction. O

Definition 6.4. We will call the measure Q;(X) = Z;(X)P the minimal extreme
measure for X .

The minimal extreme measure admits a representation similar to (6.2). Let F' denote
the distribution function of X. Then, for any A € (0,1], Z5(X) = gx(X), where

ga(r) = ) I(F(z—) <A< F(z)) + X' (A > F(2)).

Hence, Z;(X) = g(X), where

B 1—A'F(z—) 1
9(z) = /(F(m),F(:L‘)) F(z) = F(z—) uldA) + /[F(m),u A uldd)

The following statement will be used in financial applications below.

Theorem 6.5. Suppose that u({0}) = 0 and X,Y € L,. Let (&) be a sequence of

random variables such that &, € LL, each &, is independent of (X,Y), and &, Poo.
Then
EQ;(X+§TL)Y — EQL(X)Y-

n—o0

Proof. Denote gy = ¢z (X), ¢} = \(X +&,). Then, for A € (0,1],

A lon {X < qn}, A lon {X + &, < ¢},
ZNX)=Rean on{X=q}, Z(X+&) =] on{X+ =g},
0 on{X >q}, 0 on{X+¢& >dqv}.

Fix A € (0,1]. By Fubini’s theorem, Ep(Z;(X +¢&,) | X.Y) = f1(X), where

fi@) = AT"Ey gy — x) + AAF,(¢y —z), z€R
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and F,(x) = P(&, < z), AF,(x) = P(§ = z). Obviously, ¢§ — ¢, and therefore,
= At on (—oc,q)), f¥ — 0 on (gr,00). Employing the normalization condi-
tion Epf?(X) = 1, we conclude that f{(gy) — cx. Thus, f2(X) 22 Z;(X). As
0< fr< At we get

ErY Z3(X + &) = EpY f1(X) — EsVZ3(X), A€ (0.1].

Note that uy(Y) < EpYZ(X + &) < —ux(—Y). Furthermore, it follows from the
inclusion Y € L and representation (3.2) that the functions A = u(Y) and X = ux(=Y)
are p-integrable. Applying now (6.1), we complete the proof. O

Remark. Without the assumption that &, is independent of (X,Y), the theorem
does not hold. As an example, consider X = 0, {, = Y/n. Then Q;(X) = P, while
Q. (6n) = Q;;(Y).

Let us now present a financial application of the notion of the minimal extreme mea-
sure. It is related to the capital allocation problem. Delbaen [21; Sect. 9] proposed the

following formulation of this problem. Let X',..., X¢ be random variables meaning the
discounted cash flows produced by several components of a firm. Let p be a coherent risk
measure. A capital allocation between X*',..., X% is a vector 2, ..., 2% such that
d d
p(z Xi) =Y (6.3)
i=1 i=1
d d
Vh',... . h? e R,, p(z hiXi) >3 i (6.4)
i=1 i=1

From the financial point of view, 2 means the contribution of the i-th component to the
total risk of the firm, or, equivalently, the capital that should be allocated to this com-
ponent. In order to illustrate the meaning of (6.4), consider the example hi = I(i € J),
where J is a subset of {1,...,d}. Then (6.4) means that the capital allocated to a part
of the firm does not exceed the risk carried by that part.

It was proved in [16; Subsect. 2.4] under the assumption u(X?) > —oo,
u(—X% > —oo, i = 1,...,d (here u = —p) that the set of capital allocations has
the form

{—EQ(XI,...,Xd):Qexp(ixi)}, (6.5)

where X, denotes the set of extreme measures corresponding to p.
Suppose now that u = u, with p({0}) = 0. It is seen from Proposition 6.1 that if
>, X has a continuous distribution, then a capital allocation is unique. But in general,

this is not the case. For example, if X2 = — X!, then the set of capital allocations is the

interval [a,b] in R?, where a = (—u,(X'), u,(Xh)), b= (u,(=X1), —u,(—X1)).
However, if v = w, with p({0}) = 0, then there exists a particular element

of (6.5), namely z, = —EQE(EXi)(Xl,...,Xd) (for the example considered above,

g = (—Ep X! EpX1')). We call zy the central solution of the capital allocation prob-

lem. Its role is as follows. Let us disturb X, i.e. we pass from X! to X! = X? + £
where each &, is independent of (X',...,X"), & € L, and &, Poo. 1t > €L has a
continuous distribution, then &), (Zl X}l) is a singleton, so that the capital allocation z,

between )?,1, ..., X¢ is unique. By Theorem 6.5, z,, — .
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7 Pricing in an Option-Based Model

Let So € (0,00) be the initial price of some asset and S; be a positive random variable
meaning its terminal discounted price. Let K C R, be the set of strike prices of traded
European call options on this asset with maturity 1 and let ¢(K), K € K be the price
at time 0 of the option that pays (S; — K)* at time 1. The set

N
A= {Z hol(S) — KT — (K] : NeN, K, €K, h, € R}
n=1

is the set of cash flows that can be obtained in the model under consideration (we assume
that 0 € K, which corresponds to the possibility of trading the underlying asset). We
also fix a coherent utility function u.

According to [16], we say that the model satisfies the No Good Deals (NGD) condition
if there exists no X € A with u(X) > 0.

Now, let F' € L° be the payoff of some contingent claim. According to [16], we say
that a real number z is an NGD price of F if there exist no X € A, h € R with
u(X + h(F — z)) > 0. The set of NGD prices will be denoted by Ingp(F).

It was proved in [16; Subsect. 3.1] (under some additional conditions that are auto-
matically satisfied for v = u, provided that ;({0}) = 0) that the NGD condition is
satisfied if and only if D N'R # 0, where D is the determining set of u and R is the set
of risk-neutral measures, which in this model has the form

R={QeP:Eq(S — K)" = ¢(K) for any K € K}

(the notation P was introduced in Section 2). Furthermore, for F € L° such that
u(F) > —oo and u(—F) > —oc,

Incp(F) = {EqF : Q e DNR}. (7.1)

Below we give more concrete versions of these results for v = u,. Let us introduce
the notation

.= {1/) : 9 is a convex function Ry — Ry, ¢ (0) > —1,
lim ¢(z) = 0, Y|x = ¢|x, ¥" ~ Py, and
T—00

/R (jﬁ: (y) — z)J’Po(dy) < ®,(x) for any z € R+}

Here 9. denotes the right-hand derivative, " is the second derivative taken in the sense
of distributions (i.e. " ((a,b]) = ¢/, (b)—' (a)) with the convention ¢"({0}) = ¢, (0)+1,
Py = Lawp S;, and @, is the function introduced in Section 4.

Theorem 7.1. Let u=u, with u({0}) =0.
(i) The NGD is satisfied if and only if §, # 0.
(ii) For F = f(Sy) € L!, we have

w’

vaoF) ={ [ 1@wrian) v es, ).

R4
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Proof. (i) Let us prove the “only if” part. By the result mentioned above, there
exists Q € D, NR. The function ¢(x) := Eq(S; — x)* is convex, lim, ,o 9 (z) =0, and
Y]k = ¢|k. Denote Z = 9 and set g(z) = Ep(Z | S; = z). Then

b(x) = En(S1 — 1) g(5)) = / (v — 1) gw)Poldy), z€R

R+

This representation shows that ¢, (0) > —1 and 9" = gPy. By Theorem 4.6,
| (o) = ) Pofdy) = Ep(g(S) )" < Ee(Z ~0)" < @(0). w€R
R+
so that ¢ € §,.

Let us prove the “if” part. Take ¢ € §, and set g = ‘f;ﬁg, Q = g(S;)P. Then Q € P.
The inequality

Eq(9(S1) — )" = / (9(y) — 2)*Po(dy) < D,(x), = ER,.

Ry

combined with Theorem 4.6, shows that Q € D,,. Furthermore,

Eq(S) — K)* = / (v — K)H"(dy) = 6(K) = o(K), K€K

so that Q € R.
(ii) Take z € Ingp(F). By (7.1), z = Eqf(S1) with some Q € D, N R. The proof
of (i) shows that

z=Epf(51)g(51) = A f(x)g(x)Po(dz) = A f ()" (dx),

where g(z) = Ep(%2 | 1 =) and ¢ = Eq(S1 — )" € Zy.
Conversely, take z = fR+ f(x)Y"(dx) with ¢ € §,. Then z = Eqf(S;), where

Q = g(S))P, g = %. The proof of (i) shows that Q € D, N R, and by (7.1),

ZGINGD(F). O

8 Optimization in a Complete Model

Let (92, F,P) be a probability space. We consider a complete model, in which an agent
can obtain by trading any cash flow from the class

A={X € L'(Q): EqX =0},

where Q is a fixed probability measure, which is absolutely continuous with respect to P.
Clearly, problem (1.4) is equivalent to the problem

RAROC(X) — max, (8.1)
XeA

where
+00 if EpX > 0 and u(X) >0,

RAROC(X) = ¢ E,x
—u(X)

otherwise.
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We will take u = u,, where u # 6, (otherwise u,(X) = EpX, and the above problem is

meaningless).
Let @, be the function defined in Section 4 and set

p(x) =Ep(Z° —2)", z€Ry,

where Z° = 93 We will assume that there exists no X € A with u,(X) > 0 (indeed, for
such X we would have RAROC(X) = o¢). In view of the results of [16; Subsect. 3.2],
this is equivalent to the inclusion Q € D,. This, in turn, is equivalent to the inequality
¢ < ®, (see Theorem 4.6). For oo > 1, we set

x—1

%(Sﬂ)zw( +1), r € Ry,

i.e. the graph of ¢, is the a-stretching of the graph of ¢ with respect to the point (1,0)
(see Figure 4). Set a, = sup{a : ¢o < ®,}, = p({1}), v = f(o,u A~'u(dN), and
Z = a,(Z° — ==1), so that ¢,,(z) = Ep(Z — x)*. Note that the left-hand and the
right-hand derivatives of ¢,, are given by

), x>0, (8.2)
), =>0. (8.3)

B 1 gl T
Figure 4. The structure of ®,, ¢, and ¢,

Theorem 8.1. Suppose that t# 61, Q# P, and ¢ < @,,.

(i) We have supy.4 RAROC(X) = (o, — 1),

(ii) If o, > 1 and (¢a.) (B) > —1, then P(Z = ) > 0 and any random variable of
the form X = blg + clg., where B C {Z = B} and b > 0 > ¢ are such that EqX =0, is
optimal for (8.1).

(iii) If . > 1, v < o0, and either ¢, (7) = P,(y) > 0 or ,(y) = 0 and
(0a.)-(7) <0, then P(Z > ~) > 0 and any random variable of the form X = bl +clpe,
where B C {Z >~} and b < 0 < ¢ are such that EqX = 0, is optimal for (8.1).

(iv) If a. > 1 and there exists xo € (f,7) such that ¢.,(xo) = P,(z0), then
P(Z > x¢) > 0 and any random variable of the form X = blg+clg., where B = {Z > x4}
and b < 0 < ¢ are such that EqX = 0, is optimal for (8.1). If moreover supp p = [0, 1]
and xq 1is the unique point of (B,7), at which ¢, = ®,,, then an optimal element of A
18 unique up to multiplication by a positive constant.

(v) If a. > 1, but neither of conditions (ii)—(iv) is satisfied, then the mazimum in (8.1)
s not attained.
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Remarks. (i) It is easy to check that if y has no gap near 1, ie. u((1—¢,1)) >0 for
any € > 0, then (®,)' (8) = —1. Similarly, if ;z has no gap near 0, i.e. u((0,¢)) > 0 for
any € > 0, then (®,)" (y) = 0. Thus, the situation of (ii) (resp., (iii)) can be realized
only if 1 has a gap near 1 (resp., near 0). Another verification of these statements follows
from the arguments in the proof of (v) below.

(ii) In many natural complete models (for instance, in the Black-Scholes model),
we have essinf, Z%°(w) = 0. Then () > 1 — ¢ for any & > 0, and hence, a, = 1.
By Theorem 8.1 (i), supyc.4 RAROC(X) = oco. A sequence of elements X,, € A with
RAROC(X,,) — oo is provided by X,, =I(Z <n ') —Q(Z <n!).

Proof of Theorem 8.1 (i) Take R € (0,00). It follows from the result in [16; Sub-
sect. 3.2] that supy.4 RAROC(X) < R if and only if

1 1
—ifi<zﬂ—————><zpw

R 1+ R

In view of Theorem 4.6, this is equivalent to the conditions Z° > HLR and
1+ R 1 *

Note that

1+R(, , 1 o
EP<T<Z _1+—R>_x> = pa(r)(2), z€Ry,

where a(R) = . Thus, (8.4) is satisfied if and only if ur) < D,.

Set h = essinf, Z%w). Note that ¢(h) = 1—h and ¢(h+¢) > 1 — h — ¢ for any
e>0. As ¢,(0) =1, we conclude that the condition ¢,ry < ®, automatically implies
that (1 — h)a(R) < 1, which, in turn, is equivalent to Z° > HLR. As a result,

sup RAROC(X) < R <= g <Py <= a(R) <a, <= R> (a, — 1)L
XeA

(ii) The inequality
Ep(7 — 2)" = ga. (1) < Du0), TER, (5.5)

combined with Theorem 4.6, shows that 7 € D,. Consequently,_? > 3, and it follows
from (8.3) that P(Z = ) > 0. Due to Theorem 4.4, we can write Z = f[o j Zam(dA) with
Zy € Dy. As Z; =1, we deduce that, for p-a.e. A € [0,1), Zy =0 P-a.e. on {Z = B}.
Then, due to the structure of X, for p-a.e. A € [0,1], we have Ep X Z) = u)(X). Thus,
EpXZ = u,(X). Applying now the equality

o, — 1 1

«— 1
a EpX-f—a/—UM(X),

1 —
EpX + —EpXZ =

Of* O{* Of*

0=Ep X2 =

we deduce that RAROC(X) = (. — 1)7", so that X is optimal.

(iii) Consider first the case ¢a.(7) = ®,(y) > 0. Due to (8.5), Z € D, so that we
can write 7 = [, Zapu(d\) = €+, where & = [, Zxpu(d)) and n = p({0})Zo. As
Zy <AL we get £ <y, so that

Ca.(7) = Ep(Z — )" < Epn = p({0}) = @, (7).
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The fact that this inequality should be an equality means that P({ =) > 0 and n =0
P-a.e. outside {¢ = v}. This implies that, for pg-a.e. A € (0,1], Zy = A~! P-a.e. on
{Z >~} and Zy = 0 P-a.e. outside {Z > v}. The proof is now completed in the same
way as in (ii).

Now, consider the case ®,(y) = 0 and (¢..)" (7) < 0. As @,(v) = p({0}), we get
u({0}) =0. Thus, Z = Jou Zyu(d)). As Zy < A1 we get Z < 7. Tt follows from (8.2)
that P(Z = ) > 0. This implies that, for p-a.e. A € (0,1], Zy, = A~' P-a.e. on
{Z = ~}. The proof is now completed in the same way as in (ii).

(iv) Set

No = inf{x € [0,1]: /( ]Alu(d)\) < zo},
1

x

l:/ A tu(dN), r:/ At u(dN).
()‘071} [/\071]

Consider the case p({Ag}) > 0 (the other case is simpler). It is easy to see that x € [, 7]
and @, is linear on [, r]. In view of the convexity of ¢,., this implies that ¢,, = ®, on
[L,r]. As [y, Zadp < 1, we get

vo.(l) =Ep(Z - )" <Ep /[ Zan(n) = (0.2, (8.6)

Furthermore,
D,(1) =W, (M) — N = OG:E—ldx:— zdG(x) = , Aol), 7
(1) = T, (%) /0(<) ) /H (@) = u((0.0]),  (87)

A~'u(d)). In a similar way, we check that

bV =EeZ-1) <E [ Zupla) =p(0.0) = (). (89

(/\0’1}

As inequalities in (8.6) and (8.8) should be equalities, we conclude that there exists a
set B such that Zy = X' a.e. on B for A > )\g and Z, =0 a.e. on B¢ for A < ). The
proof of the first part of (iv) is now completed in the same way as in (ii).

Let us now prove the uniqueness. Let X be optimal for (8.1). Then X is not
degenerate since otherwise it should be equal to 0. Thus, we can find ¢ € R such
that Ay = P(X < ¢) belongs to (0,1). The analysis of the proof of (ii) shows that
u,(X) = EpXZ. Consequently, for p-a.e. A € [0,1], uy(X) = EpXZ,, where Z, are
taken from the representation 7 = f[(],l] Z\u(dX). This means that, for p-a.e. A € (Ao, 1],
Zy = A7 P-ae. on {X < ¢} and, for p-ae. X\ € [0,)], Zy = 0 P-a.e. outside
{X < ¢}. Consequently, for zy = f(/\o,l] A tu(d)), we have Ep(Z — x0)T = u([0, \o]).
Calculations similar to (8.7) show that ([0, Ao]) = ®,(x¢). Moreover, as Ao € (0,1) and
supp 1 = [0, 1], we have xy € (f,7). Since such z, is unique, we conclude that X takes
on only two values. Thus, any optimal X has the form blg + cIg. with some B € F and
some constants b < c¢. It is clear from the reasoning given above that P(B) is determined
uniquely. Using the same arguments as in the proof of Corollary 5.2, we deduce that dif-
ferent optimal elements should be comonotone. Consequently, B is determined uniquely,
so that an optimal strategy is unique up to multiplication by a positive constant.

(v) Assume the contrary, i.e. the existence of an optimal element X. As X is not
degenerate, we can find ¢ € R such that Ay = P(X < ¢) belongs to (0,1). Arguing in the
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same way as above, we prove that ¢, (z) = ®,(zo), where 2o = [, ;A7 u(d)). We
will now consider three cases.
Case 1. Assume that zo = . This means that p((Ag,1)) = 0. The arguments given

above show that, for p-a.e. A € [0, ], Z =0 P-a.e. outside {X < c}. Consequently,
Z = P-a.e. on {X > ¢}, so that

/\0,1]

(¢a.)(B) = =P(Z > B) > —1.

Thus, in this case conditions of (ii) are satisfied.

Case 2. Assume that xo = . This means that p((0, X)) = 0. If x({0}) > 0, then
Pa.(7) = Pu(y) = n({0}) > 0, so that conditions of (iii) are satisfied.

Now, assume that p({0}) = 0. Then ®,(y) = 0. The arguments given above show
that, for p-a.e. A € [N\, 1], Zy = X! P-ae. on {X < c}. As p([0,))) = 0, we get
Z = f(o,u A tu(d)\) =~ P-a.e. on {X < ¢}, so that

(¢a.) (7)) =—P(Z =7) <0.

Thus, in this case conditions of (iii) are satisfied.
Case 3. Assume that z € (3,7). Then conditions of (iv) are satisfied. O

Corollary 8.2. Suppose that supp u=[0,1], Q#P, ¢ < ®,, and a, > 1.

There exists an optimal element of A if and only if there exists xo € (3,7) such that
Pa. (1) = Ppu(z0o).

An optimal element is unique up to multiplication by a positive constant if and only if
such xqy s unique.

Proof. The proof of point (v) shows that, under the condition supp p = [0, 1], the
situations of (ii), (iii) are not realized. Now, the statement follows from Theorem 8.1. O

The financial interpretation of the obtained results is as follows. In most natural
situations, the optimal strategy consists in buying the binary option with the payoff

I(Z <o) =1(Z° <o (zg—1)+1) = I(Z_S < c*>.

The geometric recipe for finding c, is given in Figure 5.

1 ¢, x9 x

Figure 5. The form of c,
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