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Abstract. This paper deals with the foundations of the stochastic mathe-
matical finance, and it has three main purposes:

1. We present a self-contained construction of the vector stochastic integral
H & X with respect to a d-dimensional semimartingale X = (X},..., X{). This
notion is more general than the componentwise stochastic integral Z;jzl Hieo X',

2. We show that the vector stochastic integrals are important in the mathe-
matical finance. To be more precise, the notion of the componentwise stochastic
integral is insufficient in the First and the Second Fundamental Theorems of
Asset Pricing.

3. We prove the Second Fundamental Theorem of Asset Pricing in the gen-
eral setting, i.e. in the continuous-time case for a general multidimensional semi-
martingale. The proof is based on the martingale techniques and, in particular,
on the properties of the vector stochastic integral.
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1 Introduction

1. Vector stochastic integrals. The notion of the stochastic integral was introduced
by K. It6 [18] who constructed the stochastic integral with respect to a Brownian mo-
tion. H. Kunita and S. Watanabe [28] extended the notion of the stochastic integral to
the square integrable martingales. C. Doléans-Dade and P.-A. Meyer [12] constructed
the stochastic integral with respect to a continuous semimartingale. Further develop-
ments (see the paper [32] by P.-A. Meyer) were related to the case, where the integrand
H is a predictable (locally) bounded process and the integrator X is a semimartingale
(not necessarily continuous).

J. Jacod [19] constructed the stochastic integral with respect to a semimartingale
for unbounded predictable integrands that satisfy some integrability conditions. The
space of integrands considered by J. Jacod is in a sense the most general one, and
the stochastic integral cannot be constructed for a larger class of integrands. This
construction of the vector stochastic integral is also cited in the book [11; Ch. VIII, §3]
by C. Dellacherie and P.-A. Meyer.

The method of J. Jacod is based on the characterization of jumps of a semimartin-
gale. Another approach, which leads to the equivalent definition of the stochastic
integral, was proposed by C.S. Chou, P.-A. Meyer and C. Stricker [7].

In all the papers mentioned above, the integrator X is a one-dimensional process.
The generalization for a multidimensional semimartingale X = (X',..., X49) seems to
be obvious. The space of integrands is taken as the set of processes H = (H',..., H?)
such that, for each i = 1,...,d, H' is integrable with respect to X*. The stochastic
integral is defined as the sum Zle H'e X' of one-dimensional stochastic integrals. In
what follows, we will call this notion the componentwise stochastic integral.

However, the notion of the componentwise stochastic integral is found to be insuf-
ficient in some areas of the stochastic analysis. This was noticed by L. Galtchouk [15]
who showed that the space of componentwise stochastic integrals (with respect to a
fixed multidimensional semimartingale X) is not necessarily closed in the appropriate
topology. We cite the corresponding example in Section 6 of this paper (see Exam-
ple 6.4).



In order to obtain a closed space of stochastic integrals, one should generalize the
notion of the componentwise stochastic integral. Such a generalization was proposed
by J. Jacod [20]. He introduced the vector stochastic integral with respect to a mul-
tidimensional semimartingale. This construction yields a closed space of stochastic
integrals as shown by J. Mémin [30].

The vector stochastic integral in [20] is constructed in the implicit form as opposed
to the above mentioned papers, where the stochastic integral was constructed first for
“simple” integrands, and then extended to general integrands through a limit proce-
dure. The explicit approach to the vector stochastic integration can be found in the
book [36; Ch. VII, §la] by A.N. Shiryaev. However, the construction of the integral
in [36] is given with no proofs. In this paper, we take the same approach to the vector
stochastic integration as in [36] and provide complete proofs (see Sections 3, 4).

Note that the vector stochastic integral H e X of a d-dimensional process H
with respect to a d-dimensional semimartingale X is a one-dimensional process. The
word “vector” reflects the fact that both H and X are vector-valued processes. We
hope that this will not lead to a confusion with the vector-valued stochastic integral
(Hle X', ... ,He X%).

The construction of the vector stochastic integral is a bit complicated for two rea-
sons:

I. Tt takes into account the “interference” of different components of a multidimen-
sional process X .

II. Even in the one-dimensional case, this construction differs from most of the usual
constructions since the space of integrands H includes the processes that are not
locally bounded.

However, the notion of the vector stochastic integral is necessary for many problems
both in the mathematical finance and in the “pure” stochastic analysis. The reason is
as follows. Unlike simpler constructions, this notion yields a closed space of stochastic
integrals. In particular, the closedness of the space of integrals is the key point in the
proofs of the First and the Second Fundamental Theorems of Asset Pricing.

The description of the vector stochastic integral can be summarized as follows. If
the componentwise stochastic integral of H with respect to X exists, then the vec-
tor stochastic integral also exists and the integrals coincide. However, it may happen
that the componentwise stochastic integral does not exist, while the vector stochastic
integral is well defined (see Section 6). Moreover, the space of the vector stochastic in-
tegrals (with respect to a fixed semimartingale X ) is closed in the appropriate topology
(see Section 4).

It is worth noting that the theory of stochastic integration is still in progress.
One of the modern trends deals with the construction of stochastic integrals with
respect to processes, which are not semimartingales. A typical example of such a
process is a fractional Brownian motion. The construction of a stochastic integral with
respect to a fractional Brownian motion is described, for example, in the paper [37]
by A.N. Shiryaev. Note that if X is not a semimartingale, then the space of X-
integrable processes cannot include all the locally bounded predictable processes. This
is a consequence of the Bichteler-Dellacherie-Mokobodski theorem (see [2]).

Another way to extend stochastic integration is to consider infinite-dimensional
processes X . If X takes values in a Hilbert space, then the corresponding construction
is similar to that in the finite-dimensional case (see the book [31] by M. Métivier).



However, the construction of a stochastic integral with respect to a Banach-valued
process X is still far from being complete (see the paper [3] by T. Bjork, G.Di. Masi,
Yu.M. Kabanov and W. Runggaldier).

2. The First Fundamental Theorem of Asset Pricing. In the simplest
setting, this theorem asserts that a model of a financial market is arbitrage-free if and
only if there exists an equivalent martingale measure. Thus, the theorem establishes
the equivalence between two objects of a completely different nature: the notion of
the arbitrage arises from practice (informally, arbitrage means an opportunity to make
money from nothing), while the existence of an equivalent martingale measure is a
purely mathematical notion.

It is reasonable to assume that real financial markets satisfy the no-arbitrage con-
dition (however, this is not completely true; see [38]). Then the First Fundamental
Theorem of Asset Pricing opens the way for the martingale methods to be used in the
mathematical finance.

The First Fundamental Theorem of Asset Pricing has different formulations in
accordance with the level of generality.

Let us first consider the discrete-time case. Let X = (X} ..., X%)o<,<y be an
adapted process on a filtered probability space (Q,}", (Fn)o<n<n, P). The process X
is interpreted as a discounted price process of d assets on a securities market (so that
X! is the discounted price of the asset i at the time n). The o-field F, is interpreted
as the “information on the market up to the time n”. In what follows, we will say that
(2, F, (Fu)o<n<n, P; X) is a model of a financial market.

Definition 1.1. A self-financing strategy = is a pair (z, H), where z € R (z is
interpreted as the initial capital of the strategy ) and H = (H},..., H )o<p<n is a
(Fn)-predictable process, i.e., for any n =1,..., N, H, is F,_j-measurable and H,
is Fy-measurable. In what follows, we will omit the words “self-financing” and simply
say strategy.

The discounted capital process of a strategy m = (x, H) is given by

d n
Vnﬂ:x_‘_ZZHIQ(X;;_XIZcfl)? TL:O,...,N.

i=1 k=1

For the financial interpretation of the above definition, see the book [36; Ch. V,
§1a] by A.N. Shiryaev.

Definition 1.2. A strategy m = (z, H) realizes arbitrage if

i) z =0;

ii) Vi >0 P-as.;

iii) P{VZ > 0} > 0.

A model satisfies the No-Arbitrage condition (or a model is arbitrage-free) if such a
strategy does not exist. Notation: (NA).

Proposition 1.3 (I FTAP in the discrete time). A model is arbitrage-free if
and only if there exists an equivalent martingale measure, i.e. M(P) # (), where

M(P) ={Q ~ P: X is a (F,,, Q)-martingale}.



Diagrammatically,
(NA) <= M(P) # 0.

This result was proved by J.M. Harrison, S.R. Pliska [17] (for a finite 2) and by
R.C. Dalang, A. Morton, W. Willinger [8] (in the general case). Simple proofs of
this result can be found in the papers: [22] by J. Jacod and A.N. Shiryaev, [25] by
Yu.M. Kabanov, [26] by Yu.M. Kabanov and D.O. Kramkov, [27] by Yu.M. Kabanov
and C. Stricker as well as in the book [36; Ch. V| §2e] by A.N. Shiryaev.

Let us now pass on to the continuous-time case. Let X = (X/,..., X{);>0 be a
semimartingale on a filtered probability space (Q, F, (Fi)i>o, P). The filtration (F;)
is assumed to be right-continuous. The collection (Q, F, (Fi)i>0. P; X) is called a
continuous-time model of a financial market.

Definition 1.4. A (self-financing) strategy 7 is a pair (x, H), where z € R and
H = (H},...,H);>0 is a X-integrable process, i.e. there exists a vector stochastic
integral H @ X (see Definition 3.9).

The discounted capital process of a strategy m = (x, H) is given by

Vi=z+(HeX);, t>0.

Definition 1.5. A strategy m = (x, H) realizes arbitrage if
i) © =0;
ii) there exists a constant a such that

P{Vt >0, V] >a} =1,

iii) there exists a limit
Ve = lim V," P-as,;
t—00

iv) VI >0 P-as.;

v) P{VZ > 0} > 0.

A model satisfies the No-Arbitrage condition (or a model is arbitrage-free) if such a
strategy does not exist. Notation: (NA).

Remark. If one eliminates condition ii) from the above definition (the so-called
admissibility restriction), then arbitrage can be constructed in almost all the classical
models. This is done as follows. Let, for example, X be a Brownian motion started at
zero (the Bachelier model). Take

.ZU:O, Tzlnf{tZOthl}, Ht:I(tST)

Then properties i), iii), iv), v) of the above definition are satisfied for the strategy
m = (x,H). On the other hand, it is reasonable to assume that the Brownian motion
is arbitrage-free. O

It turns out that in the continuous-time setting, the condition (NA) does not guar-
antee the existence of an equivalent martingale measure. Moreover, it does not guaran-
tee even the existence of an equivalent local martingale measure (see [9; Example 7.7]).
Therefore, in order to obtain the First Fundamental Theorem of Asset Pricing in the
continuous-time case, one should replace the condition (NA) by a stronger one. The
following modifications of the no-arbitrage property were introduced by F. Delbaen
and W. Schachermayer in [9].



Definition 1.6. A sequence of strategies m, = (zy, Hy) realizes free lunch with
vanishing risk if

i) for each k, z = 0;

ii) for each k, there exists a constant a; such that

P{Vt >0, V;"* >a,} =1;
iii) for each k, there exists a limit
Vil = lim V™ P-a.s.;
t— o0
iv) for each k,
1
VIik > —— P-as.;
o 2T a.s.;
v) there exist constants §; > 0, d, > 0 such that, for each k,

A model satisfies the No Free Lunch with Vanishing Risk condition if such a sequence
of strategies does not exist. Notation: (NFLVR).

Definition 1.7. A sequence of strategies m, = (zy, Hy) realizes free lunch with
bounded risk if it satisfies conditions i), ii), iii) of Definition 1.6 as well as the following
conditions:

iv)’ there exists a constant a such that, for each &,

P{vt>0, V™ >a} =1,
v)’ there exist constants d; > 0, d; > 0 such that, for each k,
P{Vozk > (51} > (52,

and, for each 0 > 0,
P{Vgg’“ < —6} — 0.
k—oo

A model satisfies the No Free Lunch with Bounded Risk condition if such a sequence
of strategies does not exist. Notation: (NFLBR).

Proposition 1.8 (I FTAP in the continuous time). Suppose that X is locally
bounded. Then each of the conditions (NFLVR), (NFLBR) is equivalent to the exis-
tence of an equivalent local martingale measure, i.e. LM(P) # 0, where

LM(P) ={Q ~ P : X is a (F;, Q)-local martingale}.
Diagrammatically,
(NA) <= (NFLVR) <= (NFLBR) <= LM(P) #0 <= M(P) # 0.
The proof is given in the paper [9] by F. Delbaen and W. Schachermayer.

Remark. The condition LM(P) # () does not imply that M(P) # (). This can be
seen from the example X = ||B||™', where B is a 3-dimensional Brownian motion
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started at a point that is not equal to zero. For this example, LM(P) = {P}, while
M(P) = 0. O

The above proposition is rather general, but it contains quite an unpleasant as-
sumption that X is locally bounded. In many models of the mathematical finance, X
is not locally bounded. Such are, for example, the exponential Lévy models, i.e. the
models of the form X, = Xye®, where L is a Lévy process. One could expect that the
assumption of the local boundedness can easily be eliminated from the above proposi-
tion. The surprising thing is that without this assumption, neither of the conditions
(NFLVR), (NFLBR) is sufficient for the existence of an equivalent local martingale
measure. This was discovered by F. Delbaen and W. Schachermayer [10]. Moreover,
they found the way to reformulate the First Fundamental Theorem of Asset Pricing in
such a way that it also holds for processes that are not locally bounded.

Definition 1.9. A semimartingale X = (X;);>¢ is called a o-martingale if there
exists a sequence of predictable sets D, C Q x R, such that D, C D, 1, UD, =
Q x R, and, for any n € N, the process X := I, e X is a uniformly integrable
martingale.

A d-dimensional process X = (X/,..., X{);>o is called a o-martingale if each of
its components is a o-martingale.

Another equivalent definition of this class is the following (for the proof of the
equivalence, see Section 5).

Definition 1.10. A process X = (X}, ..., X{)i>o is called a o-martingale if there
exist a local martingale M = (M},..., M{);>o and a process H = (H},..., H)1>0
such that, for each ¢, H' is M‘-integrable and X' = X! + H' ¢ M*.

This class of processes was introduced by C.S. Chou [6] and M. Emery [14] under the
name “semimartingales de la classe ¥,,”. The definition they used is Definition 1.10.
F. Delbaen and W. Schachermayer [10] called these processes “o-martingales” (they
used the same definition). Definition 1.9 was proposed by T. Goll and J. Kallsen [16].

These processes are discussed in Section 5. Note that any local martingale is a
o-martingale. The reverse is not true (see Example 5.2).

Proposition 1.11 (I FTAP in the continuous time; general case). (a) Fach
of the conditions (NFLVR), (NFLBR) is equivalent to the ezistence of an equivalent
o -martingale measure, i.e. SM(P) # (), where

SM(P) ={Q ~ P: X is a (F;, Q)-o-martingale}.

(b) If the components of X are nonnegative, then each of the conditions (NFLVR),
(NFLBR) is equivalent to the existence of an equivalent local martingale measure, i.e.

LM(P) # 0.
Diagrammatically,
(NA) < (NFLVR) <= (NFLBR) < SM(P) # () < LM(P) # 0.

Statement (a) was proved by F. Delbaen and W. Schachermayer in [10]. A sim-
ple proof was given by Yu.M. Kabanov in [24]. Statement (b) follows from (a) and
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the following result proved by J.-P. Ansel and C. Stricker [1]: a o-martingale with
nonnegative components is a local martingale.

Remarks. (i) The example showing that

SM(P) # 0 =~ LM(P) # 0

is cited in Section 5 (see Example 5.3).

(ii) The definition of a strategy and hence, the definition of (NFLVR), (NFLBR)
employ vector stochastic integrals. If one replaces the vector stochastic integrals by the
componentwise stochastic integrals, then a smaller class of strategies and, as a result,
a weaker form of (NFLVR), (NFLBR) are obtained. It turns out that the weakened
(NFLBR) property is still sufficient for the existence of an equivalent o-martingale
measure, while the weakened (NFLVR) property is insufficient for the existence of
such a measure. This was proved in the paper [5] by A.S. Cherny. Thus, the vector
stochastic integrals are essential for the First Fundamental Theorem of Asset Pricing.
A detailed discussion of this problem is given in Section 6. a

The description of the First Fundamental Theorem of Asset Pricing can be sum-
marized as follows. In the discrete-time case, this theorem admits a very simple and
natural formulation. In the continuous-time case, the definition of arbitrage should be
reformulated carefully. Furthermore, if the process X is not locally bounded, one has
to consider o-martingales. Moreover, if X is multidimensional, one should deal with
the vector stochastic integrals.

3. The Second Fundamental Theorem of Asset Pricing. This theorem is a
counterpart of the First Fundamental Theorem of Asset Pricing. In the simplest setting,
the theorem asserts that an arbitrage-free model is complete if and only if the equivalent
martingale measure is unique. Thus, the theorem establishes the equivalence between
two objects of a completely different nature: the notion of the completeness arises from
practice (informally, completeness means a possibility to hedge any contingent claim),
while the uniqueness of an equivalent martingale measure is a purely mathematical
notion.

It should be pointed out that all the models employed in the mathematical finance
are arbitrage-free since the absence of arbitrage is the basic assumption of the modern
theory. On the other hand, only a few of the models are complete (such is, for example,
the famous Black-Scholes model), while most of the models are incomplete (such are,
for example, the stochastic volatility models). If a model is complete, it is rather easy
to price and hedge contingent claims. However, the completeness is not an obligatory
property of a model.

The Second Fundamental Theorem of Asset Pricing has several formulations in
accordance with the level of generality.

Let us first consider the discrete-time case. We assume here that Fy is P-trivial
and F = fN.

Definition 1.12. A model is complete if for any F-measurable function f, there
exists a strategy 7 such that
f=Vy P-as.



Definition 1.13. A process X has the predictable representation property with
respect to a measure Q if for any (F,, Q)-local martingale M = (M,)o<n<n, there
exists a predictable process H = (H}, ..., H)o<,<n such that

d n
My=My+) Y Hi(Xp—Xi,), n=0,... N

i=1 k=1
Notation: (PRP).

Proposition 1.14 (II FTAP in the discrete time). Suppose that M(P) # (.
Then the following conditions are equivalent:

(i) the model is complete;

(i) [M(P)| = 1;

(iii) there exists Q € M(P) such that X has the predictable representation property
with respect to Q.

Diagrammatically,
completeness <= |M(P)| =1 <= (PRP).

The proof of this statement can be found in the paper [22] by J. Jacod and
A.N. Shiryaev as well as in the book [36; Ch. V, §4f] by A.N. Shiryaev.

Remark. It is shown in [22], [36] that if [M(P)| = 1, then F, = FX (n=0,...,N)
up to P-null sets. O

Let us now pass on to the continuous-time case. We assume that the filtration (F;)
is right-continuous, Fq is P-trivial and F =\/,5, F;.

Definition 1.15. A model is complete if for each bounded F-measurable function
f, there exists a strategy m such that
i) there exist constants a and b such that

P{Vi >0,a <V <b} =1;

ii) there exists a limit
Ve = lim V" P-as;
t—o00

i) f=V7" P-as.

Definition 1.16. A process X has the predictable representation property with
respect to a measure Q if for any (F;, Q)-local martingale M = (A;);>0, there exists
an X -integrable process H = (H},..., H);>o such that M = M, + H e X . Notation:
(PRP).

We will now formulate the Second Fundamental Theorem of Asset Pricing in the
general case as a counterpart of Proposition 1.11. The counterpart of Proposition 1.8
is not formulated because it immediately follows from Theorem 1.17. This theorem is
one of the main results of this paper.



Theorem 1.17 (II FTAP in the continuous time; general case). (a) Suppose
that SM(P) # (0. Then the following conditions are equivalent:

() the model is complete;

(i) [SM(P)| = 1;

(iii) there exists Q € SM(P) such that X has the predictable representation property
with respect to Q.

(b) Suppose that the components of X are nonnegative and LM(P) # (0. Then the
following conditions are equivalent:

(i) the model is complete;

(i) [LM(P)| =1;

(iii) there exists Q € LM(P) such that X has the predictable representation property
with respect to Q.

Diagrammatically,
completeness <= |SM(P)| =1 <= (PRP).

This form of the Second Fundamental Theorem of Asset Pricing can hardly be
found in the literature. The most complicated implication

ISM(P)| =1 = completeness (1.1)

follows from the paper [10; Theorem 5.14] by F. Delbaen and W. Schachermayer, but
the proof here is based on different (simpler) arguments.
The following implication is a consequence of the results obtained by H.P. Ansel

and C. Stricker [1], J. Jacod [19; (11.2)]:
ILM(P)] =1 = completeness. (1.2)

The o-martingales are not considered in these papers. Implication (1.1) can be ob-
tained from (1.2) by using the associativity property of stochastic integrals. However,
we give a complete proof of (1.1), which is similar to the proof of (1.2) in [19]. In order
to treat o-martingales, we apply some properties of the vector stochastic integrals.

Remarks. (i) The use of o-martingales is essential for the Second Fundamental
Theorem of Asset Pricing in the general case (when X has unbounded jumps). We
present in Section 5 an example of a model, for which |[SM(P)| = 1 (and thus, the
model is complete), whereas LM(P) = ) (see Example 5.3).

(ii) If the vector stochastic integrals in Definition 1.4 are replaced by the componen-
twise stochastic integrals, then Theorem 1.17 is no longer true (see Example 7.2). The
importance of the vector stochastic integrals for the problems concerning completeness
was stressed in the papers: [4] by M. Chatelain and C. Stricker, [15] by L. Galtchouk,
[23] by R. Jarrow and D. Madan.

(iii) If condition i) of Definition 1.15 is eliminated, then Theorem 1.17 is no longer
true (see Example 7.3).

(iv) In the continuous-time case, the condition [SM(P)| = 1 does not imply that
Fi = F;* (see Example 7.4).
(v) A model can be complete, whereas SM(P) = () (see Example 7.5). O
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The above description of the Second Fundamental Theorem of Asset Pricing can
be summarized as follows. In the discrete-time case, this theorem admits a very simple
formulation. In the continuous-time case, the definition of completeness should be
reformulated carefully. Furthermore, if X is not locally bounded, one has to consider
o-martingales. Moreover, if X is multidimensional, one should deal with the vector
stochastic integrals.

4. The structure of the paper. Section 2 contains some well-known facts from
the stochastic calculus.

In Section 3, we construct the vector stochastic integral successively: for local
martingales, for finite-variation processes and for semimartingales.

Section 4 contains some basic properties of the vector stochastic integral: linearity
in H and in X, associativity (“K e (H ¢ X) = (KH) e X”), closedness of the space
of stochastic integrals, stability of the stochastic integral under the change of measure
and filtration as well as the property “[He X, K Y| = HK ¢ [X,Y]”.

In Section 5, we prove that various definitions of the o-martingale are equivalent.
We cite Emery’s example of a o-martingale that is not a local martingale. We also
cite the basic properties of the o-martingales as well as their description in terms of
the semimartingale characteristics. Moreover, we prove that any local martingale with
independent increments is in fact a martingale; any o-martingale that is a Lévy process
is in fact a martingale.

In Section 6, we cite Galtchouk’s example, which shows that the space of compo-
nentwise stochastic integrals with respect to a multidimensional semimartingale may
not be closed in the Emery topology. We also describe the relationship of different No
Free Lunch conditions stated for the vector stochastic integrals and the componentwise
stochastic integrals.

In Section 7, we prove the Second Fundamental Theorem of Asset Pricing (Theo-
rem 1.17). We also provide several related (counter-)examples.

2 Notations and Definitions

In this section, we introduce some (standard) notations and cite some well-known
definitions and facts from the martingale theory. These definitions and statements can
be found in many textbooks on the stochastic analysis (see, for example, [19], [21],
[29]). We have included this section for the convenience of the reader.

Throughout this section, we fix a filtered probability space (Q, F, (Fi)i>o0. P). We
assume that (F;) is right-continuous.

1. Processes and o-fields. We recall that the predictable o-field P on Q x Ry
is generated by the left-continuous (F;)-adapted processes and the optional o-field O
is generated by the cadlag (i.e. right-continuous with left-hand limits) (F;)-adapted
processes. A process H = (H}, ..., H)>o is called predictable if it is measurable with
respect to P (as a map from Q x R, to R?); a process H is called optional if it is
measurable with respect to O.

Proposition 2.1. The o-field P is generated by any of the following collections of
sets:
(i) B x {0}, where B € Fy, and B X (s,t], where B € Fy;
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(ii) B x {0}, where B € Fy, and [0,7], where T is a stopping time.
For the proof, see [21; Ch. I, (2.2)].

Definition 2.2. A process H is locally bounded if there exists an increasing se-

quence (7,)5%, of stopping times such that 7, — oo a.s. and, for each n € N, the
stopped process H™ is bounded.

Definition 2.3. A process A is a process of locally integrable variation if there
exists an increasing sequence (7,)5%; of stopping times such that 7, — oo a.s. and,
for each n € N, E(Var A),, < oco. The class of one-dimensional (resp: d-dimensional)
adapted processes of locally integrable variation is denoted by A (resp: AL ).

Definition 2.4. A sequence of processes (X,)°, converges to a process X in
probability uniformly on compact intervals if for any ¢t > 0, sup,, |(X,)s — X —y)
- n—o0

Notation: X, —2 X .

Remarks. (i) All the processes from the spaces Apc, A¢. (and from the spaces
Mige, Mt S, 8%, S,, S;,i Y+, V, V¢ defined below) are supposed to be cadlag, i.e.
right-continuous with left-hand limits. a

(ii) By the equality of two processes X = Y we will mean the equality up to
indistinguishability (i.e. P{Vt > 0, X; =Y;} =1). O

2. Local martingales. Recall that a process M is called a local martingale if
there exists an increasing sequence (7,)2°; of stopping times such that 7, — oo a.s.
and, for each n € N, the stopped process M™ is a uniformly integrable martingale.
The sequence (7,) is called a localizing sequence for M. The class of one-dimensional
(resp: d-dimensional) local martingales will be denoted by M, (resp: M¢ ).

loc
Proposition 2.5. If M € M., then [M]'/? € A..
For the proof, see [21; Ch. I, (4.55)].
The set
,Hl = {M € Mloc : Esup |Mt| < OO}
>0

is a Banach space with respect to the norm ||M||3 = Esup,sq|M;|. Any M € H' is
uniformly integrable. In particular, almost surely there exists a limit My, = lim;_ o, M;.
We will also consider the space

H® ={M € Mo : sup |My| € L™=}
>0

equipped with the norm ||M||ye = HsuptZO |Mt|HL°°'

Proposition 2.6 (Davis inequalities). There ezist constants 0 < ¢ < C such
that, for any M € H' with My =0,

cE[M]}/* < Esup |M,| < CE[M]Y>.

>0

12



For the proof, see [29; Ch. I, §9].
Propositions 2.5 and 2.6 yield

Corollary 2.7. Let M € M_. Then there exists an increasing sequence (T,),

of stopping times such that 1, — oo a.s. and, for each n € N, M™ € H!'.

Proposition 2.8. The dual space of H' can be identified with the space BMO of
martingales with bounded mean oscillation (for the definition of this space, see [19;
(2.7)]); any N € BMO corresponds to the following functional on H':

H' > M — E(MyNy).

Moreover, BMO C Hy,, i.e. for any N € BMO, there exists an increasing sequence
(12)52, of stopping times such that T, — oo a.s. and, for each n € N, N™ € H*™.

For the proof of this proposition, see [19; Ch. II, (2.35), (2.38)].

Definition 2.9. Two local martingales M and N are said to be orthogonal if
MyNg =0 and MN € M,,.. This will be denoted as M 1 N.

Definition 2.10. A linear subspace £ C H! is called a stable subspace if it is closed
in H! and, for any stopping time 7, A € Fy and M € L, we have [,M™ € L.

Proposition 2.11. Let N € BMO and L be a stable subspace of H'. The follow-
tng conditions are equivalent:

(i) E(MyNo) =0 for each M € L;

(i) M L N for each M € L.

For the proof, see [19; Ch. IV, (4.7)].

3. Semimartingales. We recall that a d-dimensional process X is called a
semimartingale if it admits a decomposition X = Xy, + A + M, where A € V?,
M e ML, and Ay = My = 0. The space of one-dimensional (resp: d-dimensional)
semimartingales will be denoted by S (resp: S%).

A semimartingale X is called special if there exists a decomposition X = Xo+A+M
into a predictable finite-variation process A and a local martingale M (A, = My = 0).
Such a decomposition (if it exists) is unique (see [21; Ch. I, §4c]). It is called the
canonical decomposition of X . The space of one-dimensional (resp: d-dimensional)

special semimartingales will be denoted by S, (resp: S%).

Proposition 2.12. If X € 8¢ is continuous, then X is special and its canonical
decomposition consists of continuous A and M .

For the proof, see [21; Ch. I, (4.24)].

Proposition 2.13. If X € 8% has bounded jumps (i.e. ||AX| < a for some
a € R), then X is special.

13



For the proof, see [21; Ch. I, (4.24)].

4. Quadratic covariation. A sequence A" = {0 = 70 < 7' < ...} is a
. . . . . a.s.
Riemannian sequence if 7)) are stopping times, for any n € N, 77/ ——— oo and
m— 00

vt >0, sup(r{,’LH/\t—Tﬁl/\t)L)O.
m

n—o0

Proposition 2.14. If X,Y € S, then there exists a process [X,Y] € V such that,
for any Riemannian sequence A™ = {0 =1 < 1" < ...}, the processes

o

SP = (Xen nt = Xopnt) (YVen ot = Yopae), 120

m=0
converge to [X,Y] in probability uniformly on compact intervals.

For the proof, see [21; Ch. I, (4.47)].

Definition 2.15. The process [X,Y] is called the quadratic covariation of X and
Y. The process [X, X] is called the quadratic variation of X and will further be
denoted as [X].

Proposition 2.16. Let X,Y € § and X°¢, Y¢ denote the continuous martingale
parts of X, Y, respectively (for the definition, see [21; Ch. 1, (4.18)]). Then

X, V] =) AX,AY, + [X°, Y1),

5<-
For the proof, see [21; Ch. I, (4.52)].

5. The monotone class lemma. A family 9T of subsets of {2 is called a monotone
class if the following conditions are satisfied:

i) 0,Q € Mm;

ii)if A,Be€ 9M and A C B, then B\ A € 9M;

iii) if A, Be 9 and ANB =0, then AUB € 9;

iv) if (A,)2%, € M and A, C A4y, then |J7, A, € M.

Proposition 2.17 (Monotone class lemma). Suppose that A is a family of
subsets of Q) that is closed under finite intersections (i.e. for A,B € A, we have
AN B € A). Then the minimal monotone class that contains all the sets from 2
coincides with the o-field generated by A.

For the proof, see [33; §1.4].
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3 Construction of the Vector Stochastic Integral

1. Integral with respect to a local martingale. Let (Q,F,(F,)>0,P) be a
filtered probability space and let M € M¢ (P). Then there exist C' € V' and optional
processes % (i, =1,...,d) such that

[M*, M) = /0 7 dC,. (3.1)

Evidently, one can choose (7%) in such a way that 7}’ (w) = 7}’ (w) for all i, j, w, t.
Let us take a dense subset (\;)2°, in R? and consider the sets

{wt ZAM )\]>O}

1,j=1
d
D= {(w,t) VAERL Y Nal(w) N > o}.
7,7=1

Obviously, each Dy is optional and D = (,-, Dy.. Hence, the processes 7 = 77 1p
are optional. In view of the equality

[(\e, M /(Z)\ ) dc,

1,j=1

/ IDE dCSZO, / IDC dCSZO
0 0

Therefore, equality (3.1) remains valid if 7 is replaced by 7. Thus, the processes 7/
satisfying (3.1) can be chosen in such a way that, for each (w,t), the matrix (7 (w))
is symmetric and positively definite. In what follows, we will always choose such a
version of 7% . In particular, for any A € R¢, w € Q, t > 0, we have

we have

Do AT @IV = (m(w)A, ) < AP trm(w) = ||A||227rfi(w)- (3:2)

1,j=1

Set

Ll(M) = {H = (H',...,H% : H is predictable and
1/2
(/ (ZH 7 H])d ) <oo}.
7,7=1

Let L'(M) be the space of the equivalence classes of elements from L'(M) under the
equivalence relation

H~EK < / H;’ — Kyl (HI — Kg)) dC, =0 a.s.
ij=

1
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Definition 3.1. A simple integrand is a process H of the form

m

Hy=hoI(t=0)+> hI(e <t <7ppn), t>0, (3.3)

k=1

where 0 < 7y < ... < 7,11 are stopping times and each hj is a bounded d-dimensional
F+,-measurable random variable.

Lemma 3.2. (a) The function

| H ||y = E(/ (Z Hin HJ) )1/2

4,j=1

is a morm on L'(M).
(b) The set of simple integrands that belong to L*(M) is dense in L*(M).

Proof. (a) One should check only the triangle inequality for || |[,1(as). As (7 (w))
is symmetric and positively definite, we have

im ) TI(w) (1 + ) < ((Z i )uf)”2+(iu‘w?(w)w)m)z

for any p,v € R4, w e Q, t € R,. Hence,
d 1/2

([ (e w4 D) ac )

i,7=1

([((Smmm) (S m) ) i)

ij=1 ij=1

IN

d 1/2 d 1/2

E(/OOO(Z Hgyrngg) dcs> +E</OOO(Z ngngg) d05>

ij=1 hj=1

IN

for any H, K € L*(M).

(b) Fix H € L'(M). Since [M]'/? € Ay for i = 1,...,d (see Proposition 2.5),
there exists an increasing sequence (7,)32, of stopping times such that 7, — oo a.s.

and
Tn N 1/2
E(/ 7r§’d05> <oo, t=1,....d, neN
0

1
Set (H,); = H,I(t < 7,). Then H, -

outset that

H. Therefore, we can suppose from the
n—oo

o 1/2
E(/ W;ZdC’s> <oo, i=1,...,d. (3.4)
0

Let us fix A € R?. In view of (3.2) and (3.4), any process of the form A, where
D € P, belongs to L'(M). Set

M = {D € P : Mp can be approximated by simple integrands in LI(M)}.
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It is easy to verify that 991 is a monotone class. Furthermore, 9 contains all the sets
B x {0}, where B € Fy, and B X (s,t], where B € F,. By the monotone class lemma
combined with Proposition 2.1, 9t = P.

Any bounded predictable H can be uniformly approximated by the finite sums
of the form ), Ay Ip,, where D, € P. Hence, any bounded predictable H can be
approximated by the simple integrands in L'(M).

Finally, for an arbitrary H € L'(M),

H, = HI(|H| < n) “2 1,

n—oo
and, from the above result, H can be approximated by the simple integrands in
LY(M). O

Remark. Obviously, the space L'(M) and the norm || ||;:(a) do not depend on the
choice of 7 and C' that satisfy (3.1). O
For a simple integrand (3.3), we define the integral H e M as

d m

(H o M)t = Z Z h;c(MtZ/\TkJrl Mtz/\Tk) t Z O

Then it is easy to verify that H e M € M, and

(H /(Z H ”HJ) (3.5)

3,j=1

Let H € L'(M). Then there exists a sequence (H,) of simple integrands that
converges to H in L'(M). Equality (3.5), together with the Davis inequalities, shows
that the sequence (H, e M) is fundamental in H'. Hence, there exists a H'-limit of
this sequence. Obviously, it does not depend on the choice of a sequence (H,) that
converges to H.

Definition 3.3. Let H € L'(M) and (H,) be a sequence of simple integrands
that converges to H in L'(M). Then the vector stochastic integral H e M is defined
as the H'-limit of (H,, e M).

Our next goal is to define the vector stochastic integral H e M for a larger class of
integrands than L'(M). To this end, we introduce the class

1
Lloc

(M) = {H = (H',...,H% : H is predictable and

([(Smmm)ac) ca.l

7,7=1

where 7% and C satisfy (3.1). For a one-dimensional local martingale M, we have a
simpler formula

. 1/2
Li (M) = {H : H is predictable and (/ H? d[M]S> € Aloc}.
0

17



Let H € L (M). Then there exists an increasing sequence (7,)>°, of stopping
times such that 7,, — oo a.s. and

1/2
(/ (Z Hid 1) d ) <.
7,7=1
For each n € N, HlI,j € L'(M). Furthermore,
((HI[[U,TnH]}) ° M)Tn = (HI[[O,TTL]]) e M, neN
Thus, there exists a unique process H e M such that
(H ° M)T" = (HI[[O,Tn:H) e M, neN (36)

Obviously, H e M does not depend on the choice of a localizing sequence (7,,)52 ;.

Definition 3.4. For H € L, (M), the process H e M that satisfies (3.6) is called
the vector stochastic integral of H with respect to M.

Obviously, H ¢ M € M.

Remark. The space L. .(M) is in a sense the largest class of predictable processes
that can be integrated with respect to M in such a way that H e M € M,,.. Indeed,
for a “reasonably” defined stochastic integral, one should have the equality

e [ (S )i

If HeME M, then [H e M]'/? € Ay, (see Proposition 2.5). This, together with
the above equality, means that H € L} (M). O

loc

Lemma 3.5. Let M € M{ . The vector stochastic integral with respect to M has
the following properties:
(a) of H,Hy € LL (M), a,as € R, then ayHy + asH, € Ll (M) and

(O[1H1 +a2H2) o M = Oél(Hl .M) +a2(H20M);
(b) if H € L, (M), then H ¢ M € Mo, and

e = [[(32 wtey ) ac

i,j=1

where 7 and C satisfy (3.1);
(c) if H € LL.(M) and T is a stopping time, then

(HeM)" = (HeM")= (Hlp,) o M;
(d) if H € L, (M) and D € P, then

Ipe(HeM)=(HIp)e M;

18



(e) if H € LL.(M), then
A(H e M) = (H,AM);
(f) if He L' (M) and H, = HI(||H| < n), then

H, oM Hel

n—oo

Proof. Properties (a), (b), (c), (e), (f) are easily derived from the definition of the
vector stochastic integral.

Let us prove (d). There exists an increasing sequence (7,)%°; of stopping times
such that 7, — oo a.s. and

d 1/2

E(/OT"(ngi)dcs> < o0 (/ (ZH’ ”HJ) )1/2<oo, nenN,

=1 1,j=1
Fix n € N. The set
M={DeP:Ipe(HeM™) = (HIp)e M™}

is a monotone class that, in view of (c), contains all the sets of the form [0, 7], where
7 is a stopping time. Obviously, 9T contains all the sets of the form B x {0}, where
B € Fy. By the monotone class lemma combined with Proposition 2.1, we get 9t = P.
The application of property (c¢) completes the proof. O

Lemma 3.6. If H € L{, . (M;)NL}, (M), ay, a9 € R, then H € L}, (cy My+ao Mo)
and
He (OélMl + (XQMQ) = Oél(H o Ml) + QQ(.H L] Mg) (37)

Proof. Suppose first that H is bounded. Then the inclusion H € L .(ayM; +
ay Ms) follows from (3.2), and we prove (3.7) by the standard scheme:

1. for H = M (by the monotone class lemma);

2. for bounded H (through the uniform approximation).
Suppose now that H € L (M) N Li, (M,). Set H, = HI(||H|| < n). By the

above reasoning, (3.7) is true for H,. Choose C' € V' and optional processes 7}’ , 7y ,
0% in such a way that

[y, M} ] :/(w;j) dC,, k=12,
0
[ M + M) = / o dC,.
0

Applying equality (3.7) for H,, Lemma 3.5 (b) and the inequality [X + Y] < 2[X] +
2[Y], we get

/ |H||<n(z ”HJ)

o t d
/ I(|H|l <n (Z H (7 g) dCS+2/ I(||H|| < n) (Z o (Wéj)ng) ic.
i,5=1 0 =1
/(;H )dC“/(”ZlH’ HI)dC,, t>0neN.
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This leads to the inclusion H € L (i My + ayMs). Equality (3.7) for H is proved

loc

with the help of Lemma 3.5 (f). O

2. Integral with respect to a process of finite variation. Let A € V¢. Then
there exist C' € VT and optional processes a’ (i = 1,...,d) such that

Al = / a’ dC,. (3.8)
0
Let us consider the space

Lyar(A) = {H = (H',...,H% : H is predictable and,
d

> _Hid

=1

t
for any t > 0, / dCs < o0 a.s.}.
0

Obviously, L.(A) does not depend on the choice of a* and C' that satisfy (3.8).

Definition 3.7. For H € Ly, (A), the vector stochastic integral is defined by

. d
He A :/ (Zﬂjag) dc.
0 "im1
Obviously, He A € V.

Lemma 3.8. Let A € V¢. The vector stochastic integral with respect to A has the

following properties:
(a) if Hy,Hy € Lya(A), 1,0 € R, then a1Hy + anHy € Ly (A) and

(anHy + asHy) @ A=y (H; @ A) + aa(Hoy @ A);

(b) if H € Lyar(A1) N Lyar(As), aq, 00 € R, then H € Ly, (a1 Ay + agAg) and
He(agA; 4+ anAs) = ay(H @ Ay) + ao(H o Ay);

(c) if H € Lyar(A), then He A€V and

Var(H o A) :/'

0

where a' and C satisfy (3.8);
(d) if H € Lyyy(A) and D € P, then

Ipe(HeA) = (HIp)e A;
(e) if H € Lyar(A), then
A(H o A) = (H, AA);
(f) if H € Lya(A) and H, = HI(||H|| < n), then

H,e A—"13 He A.

n—o0
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Proof. Straightforward. U

3. Integral with respect to a semimartingale. We have so far defined two vec-
tor stochastic integrals: the integral with respect to a local martingale (Definition 3.4)
and the integral with respect to a process of finite variation (Definition 3.7). At the
moment, it is not clear whether these two definitions coincide for a process X that
belongs to Mg .NV?. Therefore, in order to avoid ambiguities, we will write (M)H e X

for the integral with respect to a local martingale given by Definition 3.4 and (LS)H e X
for the Lebesgue-Stieltjes integral given by Definition 3.7.

Definition 3.9. Let X € S¢. A process H is X -integrable if there exists a de-
composition X = A+ M with A € V¢, M € M{ _ such that H € L.,.(A) N LL.(M).

loc loc
In this case, the vector stochastic integral is defined by

HeX = (LS)He A+ (M)H o M.
The space of X -integrable processes will be denoted by L(X).
Obviously, He X € S.

Remarks. (i) If H = (H',..., H%) is a predictable locally bounded process, then,
for any decomposition X = A+ M with A € V¢, M € M{ ., we have H € L,,,(A) N

loc»
LL.(M) (the inclusion H € Ly, (A) is obvious, while the inclusion H € L{ (M) is

loc

verified with the help of (3.2)). Thus, L(X) includes all the locally bounded predictable
processes.

(i) If H € L(X), then H may not belong to Ly, (A) N Ll (M) for all the decom-

positions X = A+ M with A € V4, M € MZ_ (see Example 5.2). O

loc

Let us prove the correctness of Definition 3.9.

Lemma 3.10. Suppose that Z € VN ML and H € Ly (Z) N L .(Z). Then

(LSYHe Z = (M)H o Z. (3.9)

Proof. By the localization, we can suppose from the outset that H € L'(Z) and
E[Z"]clx/j2 < oo for i = 1,...,d (see Proposition 2.5). Applying the monotone class
lemma, we prove (3.9) for H = Mp, where A € RY, D € P.

Let H be a bounded predictable process. There exists a sequence (H,) that tends
to H uniformly, and each H, is a finite sum of the form >, A\;Ip, with D, € P (and
thus, (3.9) is true for H, ). Then

(LS)H, ® Z —2— (LS)H @ Z,

(M)H, ¢ Z 2“5 (M)H o Z,

n—oo

and consequently,
(M)H,, @ Z =2 (M)H o Z.

n—oo

This proves the statement for a bounded H.
Finally, for H € Ly, (Z) N L'(Z), we use the same reasoning as above with
H,=HI(|H| <n). O

Lemmas 3.6, 3.8 (b) and 3.10 yield
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Corollary 3.11 (Correctness of Definition 3.9). Suppose that X = A+ M =
A+ M with A, A" e Vi, M, M' € M{ . and

H e LV&F(A) N Llloc(M) N LV&F(AI) N Llloc(Ml)'
Then
(LS)H A+ (M)H @ M = (LS)H o A' + (M)H o M.
4 Properties of the Vector Stochastic Integral

1. Linearity. We will prove here two properties: “linearity in X7 and “linearity in
H?”. The first one is a direct consequence of Lemmas 3.6 and 3.8 (b).

Theorem 4.1. ]f H € L(Xl) N L(XQ), 1,0 € R, then H € L(Olel + OZQXQ)
and
He (ale + OfQXQ) = Oél(H ° Xl) + OZQ(H ° XQ)

The “linearity in H” is less trivial. In order to prove it, we will need the auxiliary
lemma. This lemma is also very useful for proving other properties of the vector
stochastic integral. The lemma is taken from [20].

Lemma 4.2. Let X € Sg and let X = Xg+ A+ M be the canonical decomposition
of X. Suppose that H € L(X). Then

HeX €S, — H € Lyu(A)N L, (M).
In this case, the canonical decomposition of H @ X s given by
HeX =Heo A+ Heoll. (4.1)

Proof. Suppose that HeX € S,. Set Y = He X . Let Y = B+ N be the canonical
decomposition of Y. For any n € N, we have I(||H|| < n) € L (B) N L, (N).
Furthermore,

I(|H| < n) oY = I(|H| < n) e B+ I(|H|| <n)e N (4.2)

is the canonical decomposition of I(||H|| < n)eY (note that both I(||H|| < n) and B
are predictable). Set H, = HI(||H|| < n). Then

H,oe X =—H,0o A+ H, oM (4.3)

is the canonical decomposition of H,, ¢ X. Applying Lemmas 3.5 (d) and 3.8 (d), one
can verify that
I(|H| <n)eY = H, e X. (4.4)

Using (4.2), (4.3), (4.4) and the uniqueness of the canonical decomposition, we get

I(||H]| <n)eB=H,e A,
I(|H||<n)eN=H,eM.
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By Lemma 3.5 (b),

/0 I(H| < n)d[N], = [I(|H| < n) o N] = [H, o M]

= [ (3 i m) ac,

1, j=1

where 7 and C satisfy (3.1). Consequently,

[(52 mem)ac.=

1,j=1

and, applying Proposition 2.5, we deduce that H € LL _(M).
By Lemma 3.8 (c),

[ < nyavas By, = [ 1) < \ZH’ |

where o', C satisfy (3.8). Consequently, for any ¢ > 0,

ZHZZ

This means that H € Ly, (A). Thus, we have proved one implication of the Lemma.
The reverse implication is obvious as well as the fact that (4.1) is the canonical
decomposition of H e X . O

dCs = (Var B); < oo a.s.

Theorem 4.3. If H),H, € L(X), aj,ay € R, then oy Hy + asHy € L(X) and
(anHy + asHy) @ X = ay(Hy @ X) + a(Hy @ X).
Proof. Take
D ={(w,t): [AXy(w)|| > 1 or |A(H; @ X);(w)] > 1 or |A(H; e X);(w)| > 1}.

Obviously, D € O and D is a.s. discrete, i.e. for any ¢ > 0 and almost every w, the
set {s:(w,s) € D, s <t} is finite. Take Y, = H, ¢ X (k=1,2),

)?—ZIDAXS, X=X-X, (4.5)
ZID (Ye)s =Y, - Y., k=12 (4.6)
According to Lemmas 3.5 (e) and 3.8 (e), we get AY;, = (Hy, AX) that leads to
Vi=HyeX, k=1,2 (4.7)
(note that Hy, € Ly(X) since D is a.s. discrete).
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We have Hj, € L(X) N L(X). Thanks to Theorem 4.1, Hy € L(X), and, in view
of (4.7), _ B
Yk:Hk.X, k:1,2

By Proposition 2.13, the semimartingales_Y, Y, and Y, are special. Let X = X, +
A+ M be the canonical decomposition of X . According to Lemma 4.2, Hy € Ly, (A)N

Ll .(M). Lemmas 3.5 (a), 3.8 (a) yield that (a;H; + agHs) € Lvar(A) N L (M) and
(i Hy + agHy) ¢ X = i (Hy @ X) + an(Hy @ X). (4.8)
By Lemma (3.5) (a), (aqHy 4 aaHs) € Ly (X) and
(a1 Hy + asHy) @ X = oy (Hy @ X) + ao(Hy @ X). (4.9)

Taken together, equalities (4.8), (4.9) and Theorem 4.1 yield the desired statement. O

2. Associativity. We mean by associativity the following property: Ke(HeX) =
(KH) e X. This property will be proved in two forms (Theorem 4.6 and Theorem 4.7
below).

Lemma 4.4. Let M € M{_ and H € L\ (M). Let K be a one-dimensional
predictable process. Then

KeL,.(HeM) < KH e L, (M). (4.10)

In this case,

Ke(HeM)=(KH)e M. (4.11)

Proof. Statement (4.10) follows from the equality

/ K2d[H e M], / (ZKQnging)dC’s,

where 7/ and C satisfy (3.1). (This equality is a consequence of Lemma 3.5 (b)).
Equality (4.11) is proved by the standard scheme:
1. for K = Ip (by Lemma 3.5 (d));
2. for bounded K (through the uniform approximation);
3. for K € L{,.(H @ M) (through the approximation by KI(|K| < n)). O

Lemma 4.5. Let A € V¥ and H € Ly, (A). Let K be a one-dimensional pre-
dictable process. Then

K€ Ly, (HeA) <= KH € Ly,(A).

In this case,

Ke(HeA)=(KH)e A.

Proof. Straightforward. U
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Theorem 4.6 (First Associativity Theorem). Let X € 8¢ and H € L(X).
Let K be a one-dimensional predictable process. Then

KeL(HeX) — KH e L(X). (4.12)

In this case,
Ke(HeX)=(KH)e X.

Proof. Suppose that K € L(H e X). Take
D ={(w,t) : |AX;(w)|| > 1 or |A(H e X),(w)| > 1 or [A(K e (H e X)),(w)| > 1},
Set
Y=—HeX, Z=KeY
and define X, YV, Z, X, Y, Z in the same way as in (4.5), (4.6). It follows from
Lemmas 3.5 (e), 3.8 (e) that
Y=HeX, Z=KeY. (4.13)
By Theorem 4.1,
Y=HeX, Z=KeoVY.

In view of Proposition 2.13, the semimartingales X, Y, Z are special. Let X =
Xo + A+ M be the canonical decomposition of X. According to Lemma 4.2, H €
Lyor(A)N L (M) and

Y=HoeA+HeoM

is the canonical decomposition of Y. By Lemma 4.2, K € Ly,,(H @ A)N L}
Applying Lemmas 4.4, 4.5, we get: KH € Ly, (A) N L. (M) and

loc

(HeM).

Z7=Ke(HeA)+Ke(HeM)=(KH)oe A+ (KH)o M = (KH)eo X.

By (4.13), Z = (KH) e X. Consequently, KH € L(X) and Z = (KH) e X.
The proof of the reverse implication in (4.12) is similar. O

The same arguments as above allow us to prove the second associativity theorem:

Theorem 4.7 (Second Associativity Theorem). Let X € 8¢ and let H be a
d-dimensional process such that H' € L(X?) for each i=1,...,d. Set Y' = H' ¢ X*.
Let K be a predictable d-dimensional process. Set J' = K'H', J = (J',...,J%). Then

KeLY) < J e L(X).

In this case,
KeY =JeX.

3. Closedness of the space of stochastic integrals. The following metric on
S was introduced by M. Emery in [13].
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Definition 4.8. For X,Y € S, the Eme’ry distance between X and Y equals

YY) = sp {572 E( (K o (X = V)l A1)}

(the supremum is taken over the predictable K with |K| < 1). The corresponding
topology is called the semimartingale or Emery topology. The convergence in this

topology will be denoted as X, S X,

Remarks. (i) If M, 7, M , then M, S5 M. This is a consequence of Lemma 3.5 (b)
and the Davis inequalities.

(i) Obviously, if X, < X, then X, ~2% X.
(iii) The space S is complete with respect to the Emery metric (for the proof,
see [13; Théoreme 1]). O

The proof of the following result is borrowed from [7].

Lemma 4.9. Suppose that a sequence (X,,) converges to X in the E’me'ry topology
with respect to a measure P. Let Q < P. Then (X,,) converges to X in the Emery
topology with respect to Q.

Proof. The function || X|s = p(X,0) is a quasinorm on S (for the definition,
see [39; Ch. I]). The space S(P) (resp: S(Q)) is complete with respect to the quasinorm
| [lspy (vesp: || [[s(q)) (see Remark (iii) above). Let us consider the map

¢:S(P)> X +— X € §(Q).

Taking into account Remark (ii) above, we deduce that the graph of ¢ is closed. The
application of the closed graph theorem (see [39; Ch. II]) shows that ¢ is continuous.
This yields the result. 0

Proposition 4.10. Let X € 8. Then the space
LIX)={HeX:HeL(X)}

15 closed in the Eme’ry topology.
For the proof, see [30; Théoreme V.4].

4. Change of measure and filtration. The vector stochastic integral remains
the same under an equivalent change of measure.

Lemma 4.11. Let X € 8 and H € L(X). Set H, = HI(||H|| < n). Then

H,e X —° s HeX.

n—oo
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Proof. Let X = A+ M be a decomposition such that H € Ly, (A) N L, (M).

There exists an increasing sequence (7,,) of stopping times such that 7, — oc a.s.
and HI[[O,TmH eL! (M) By Lemma 3.5 (f),

(HnI[[O,Tm}]) o M —> (HI[[O Tm}]) oM, meN

n—oo

The convergence also holds in the Emery topology (see Remark (i) after Definition 4.8).
Since 7, — oo a.s., we deduce that

H,e M —> Hel.

n—oo

For any predictable K with |K| <1 and any ¢ > 0, we have

(Var(K (H - H,) /|K|I||H | > n) ‘ZH i

s/ 1 > |3 it dc, 25,

where a' and C satisfy (3.8) (we used here Lemma 3.8 (¢)). Hence,

HHOALHOA.

n—oQ

This completes the proof. O

Lemma 4.12. Let X € 8 and (H,) be a sequence of predictable d-dimensional

processes that tends to H pointwise. Suppose that there exists a € R such that || H,|| <
a for all n € N. Then

H,e X —> 3 He X.

n—oo

The proof is similar to the proof of Lemma 4.11.

Lemma 4.13. Let X € 8¢ and H be a predictable d-dimensional process. Set

H, = HI(||H|| < n) and suppose that the sequence (H, ® X) converges in the Emery
topology to a process Z. Then H € L(X) and Z = H ¢ X .

Proof. By Proposition 4.10, there exists K € L(X) such that Z7 = K e X . Set

=3
n=1

Then J is predictable and 0 < J < 1. Using Theorem 4.6 and the definition of the
Emery topology, it is easy to verify that

I(n—1<||H| < n).

S|

Je(HyeX)—>5 JeZ=(JK)eX.

n—oQ

Note that ||JH]|| < 1. By Lemma 4.12 and Theorem 4.6,

Je(H,eX)=(JH,) e X —>— (JH) e X.

n—o0
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Thus, (JH)e X = (JK)e X.
As J'JK(= K) € L(X), Theorem 4.6 shows that J ' € L((JK)eX) = L((JH)e
X). One more application of this theorem yields that H(= J~'JH) € L(X) and

HeX=J"'e((JH)eX)=J ' ((JK)eX)=KeX =Z.
This completes the proof. O

Remark. Lemmas 4.11 and 4.13 combined together show that H € L(X) if and only
if the sequence (H,eX), where H, = HI(|H|| < n), converges in the Emery topology.
This provides another way of defining the class L(X). In the paper [7], C.S. Chou, P.-
A. Meyer and C. Stricker took this approach from the outset and defined the stochastic
integral as the limit of (H,, ® X) in the Emery topology. However, they considered only
the one-dimensional case. a

In the following theorem, we use the notations S¢(P), L(X;P), (P)H e X in order
to indicate the dependence of these notions on the measure P.

Theorem 4.14. Let X € 84(P) and H € L(X;P). Let Q < P. Then X € §%(Q),
H e L(X;Q) and
(P)He X =(Q)H o X. (4.14)

Remark. The integral (P)H e X is defined up to P-indistinguishability, while (Q)H e
X is defined only up to Q-indistinguishability. Therefore, (4.14) is understood as
follows: any version of (P)H e X is a version of (Q)H e X. O

Proof of Theorem 4.14. For the implication X € S¢(P) = X € 8%(Q), see [21;
Ch. III, (3.13)] or [29; Ch. 4, §5]. Let us first prove (4.14) for bounded H.

For H = Mp, where A\ € R?, D € P, this equality follows from the monotone
class lemma. By linearity (Theorem 4.3), we extend (4.14) to the finite sums of the
form ), ArIp,. Any bounded H can be uniformly approximated by a sequence (H,),
where each H,, has this form. By Lemma 4.12,

(P)H, o X 2% (PYH o X, (4.15)

n—o0

(QH, o X 2 (QH o X. (4.16)

n—0o0

Combining (4.15) with Lemma 4.9, we get

(P)H, » X 2 (PYH o X.

n—o0

As (P)H,e X = (Q)H,, ® X, we obtain (P)H e X = (Q)H e X.
Now, let H € L(X). Set H, = HI(||H|| < n). By Lemma 4.11,

(P)H, o X 2 (PYH o X.

n—o0

Hence,
(P)H, o X 2 (PYH o X.

n—o0
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From the above result (for bounded H), (P)H, ¢ X = (Q)H,, ® X, and therefore,

(QH, o X 2% (P)H o X.

n—oe

Applying Lemma 4.13, we get: H € L(X;Q) and (P)H e X = (Q)H ¢ X. O

The vector stochastic integral is stable not only under an equivalent change of
measure, but under a change of filtration as well. The paper [20] by J. Jacod contains
the following statement (we use the notations S¢(F), L(X;F), (F)H e X to indicate
that these objects depend on the filtration (F;)).

Proposition 4.15. Let X € SUF) and H € L(X;F). Let (G;) be a filtration
such that FX C G, C F; and H is (G;)-predictable. Then X € 8%(G), H € L(X;G)
and

Remarks. (i) The inclusion L(X;F) C L(X;G) may be strict.

(i) If the condition F* C G, C F; is violated, then X may not be a (G;)-
semimartingale. O

5. Quadratic covariation. We will prove here the multidimensional version of
the property “/He X, K ¢ Y| =HK o [X,Y]”.

Lemma 4.16. Let v be a finite positive measure on B([0,1]). Let f, g, h be
positive functions from L'(v) such that, for any set J of the form (ay,b]U- - -U(am, by

with a;,b; € Q,
1/2 1/2
/fdl/ﬁ(/gdl/) (/hdu) .
T J J
Then f < +/gh v-a.e.

Proof. Suppose that v{f > \/gh} > 0. Then there exist constants £ and A such
that v(D) > 0, where D = {f > VKA, g < k, h < A}. There exists a sequence of sets
(Jn)5%, of the form (ay,b1] U - U (am, by with a;,b; € Q such that v(J,, A D) — 0.
Then

fdv —— | fdv, / gdl/—>/ gdv, / hdy —— hdl/,
D n

J n—oe n—oo n—oo
n

/Dfdl/ﬁ (/ngl/>1/2 (/D hdu)l/Q.

But this contradicts the choice of D. O

which implies that

Lemma 4.17. Let M € M., N € Mg .. Choose C € V* and optional processes
7, pil o in such a way that [M', M7] = 19 eC', [M* N] = piieC, [N}, N7] = o'/ e
C. Then, for any optional processes H = (H},...,H!);>0 and K = (K},..., K{)i>0,

dye d 1/2 e 1/2
Hp"K’| o C < H'n"H) o C K'0“K’) e« C .
> (Zrem)ec) (3 rorm)e)

ij=1 ij=1 ij=1
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Proof. Take o € R?, 3 € R® and a set J of the form (ay,b]U---U(am,byn]. Then

(L, i o/pijﬁj> o C = [(al;) e M, (BI,) e N],

ij=1

and hence,
d,e

'Y iy

1,j=1

o C = Var|(al;) e M, (B1;) e N|.

It follows from Proposition 2.14 that
Var[(al;) e M, (BI,)  N| < [(al,) e M]'?[(BI,) e N]'/?
i 1/2 ‘Lo 12
(0w oc) (05 o) o0)
i,j=1 =1
Using Lemma 4.16, we conclude that

S ] < (L) (3 poer)”

4,j=1 4,j=1 i,j=1

for P® dC-a.e. (w,t). The application of the Cauchy inequality leads to the desired
statement. O

Lemma 4.18. Let M € M{,., N € M, H € Lj, (M), K € L, (N). Choose
C € V' and optional processes w0, p', o in such a way that [M* M7] = 7 & C,
[M',N'] = p @« C', [N, N7] = 0% e C'. Then ZZ *  Hp"KI e L(C) and

[HeM,K eN|= (Z H ”KJ> (4.17)

Proof. The inclusion Y% Hip"KJ e L(C) follows from the previous lemma.

i,9=1
In order to prove (4.17), suppose first that H € L'(M), K € L'(N). Then
1
there exist sequences (H,) and (K,) of simple integrands such that H, LDy ,
n—o0
1
K, —> LGNS Obviously, equality (4.17) is valid for H, and K,.
n—oo
Set H,=H,— H, K, = K, — K. Then
[H,e M,K,eN|—[HeMKeN| (4.18)
—[H,e M,KeN|+[HeMIK,eN|+[H,oMIK,eN]. '
We have B B
|[H, o M, K o N]| < [H, e M]'/*[K o N]'/2.
Since

[H, e M/ L0,
n—oo
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we have B
[H, e M, K ¢ N| =2 0.

n—o0

Applying the same reasoning to the other terms in the right-hand side of (4.18), we

conclude that
[H, e M, K, e N| =2 [H e M, K o N].

n—oo

On the other hand,

d,e d,e
<Z H;pUKg> o= (Z Hipinj> oC

i,j=1 i,j=1
d,e d.e . d.e . .
(S apE ) ecs (X miE ) ec (L HAR, ) eC
ij=1 ij=1 i,j=1

In view of the previous lemma, this sum tends to zero in probability uniformly on
compact intervals. As a result, (4.17) is true for H and K.

The statement for the case H € L (M), K € L\ .(N) can now easily be derived
with the help of the equality [X7,Y7] = [X,Y]". O

Remark. It follows from the above lemma that if M € M{ ., H € L. (M), then,

for any N € M,
d

[H e M,N| = (; HW‘) oC,

where p', C are chosen in such a way that [M!, N] = p' ¢ C. J. Jacod [20] took
this property as a definition of the vector stochastic integral with respect to a local
martingale. O

Theorem 4.19. Let X € 8%, Y € 8¢, H € L(X), K € L(Y). Choose C € V*
and optional processes ™, p, 0% in such a way that (X', X7] = 7" e C, [X!, Y] =
pieC, [V, Y] =0eC. Then 30" H'p"K7 € L(C) and

d.e
[He X,KeoY]= (Z H"pijm') oC.
ij=1
Proof. Let X = A+ M, Y = B+ N be decompositions of X and Y such that
H € Ly (ANLL (M), K € Ly (B)NLL (N). By the appropriate choice of C', we may

loc loc

assume that all the covariations [A?, BY], [M’, B7], [A", N’], [M*, N7] are absolutely

continuous with respect to C', and therefore, there exist processes p'ig, pip: Pin:
piry such that

[Ai’ Bj] = pi{B hd C’ [Mia Bj] = pé\@B hd C’
[AiaNj] ZPZN.Cﬂ [MiaNj] :pZ].\J/IIN.C'
It follows from Proposition 2.16 that

phpeC =Y AMABI.

s<-
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Hence,

d.e
Stk

1,j=1

< (gomar) " (Sm 0]

5<- 5<-

«C =Y |(H, AM) (K, AB,)|
s<-

1/2

1/2

_ (Z(A(H . M)S)2>1/2 <Z(A(K . B)s)2> :

5<- 5<-

and this expression is finite by Proposition 2.16. Furthermore,

d.e
(Z H"pj@BKj> oC =) (H,,AM)(K, AB,)=[H e MK o B.
s<-

1,j=1 <
In a similar way we consider the combinations (A, B), (A, N) and (M,N) (we
apply the previous lemma to treat (M, N)). The desired result follows now from the
equalities - - - -
P = P+ Piis + Pin + Py
and
[He X, KeY|=[He A KeB|+[HeMKeB]
+[HeA KeN|+[HeMKeN]|. O

Corollary 4.20. Let X € §, Y € S, H € L(X), K € L(Y). Then HK €
L([X,Y]) and
[He X,KeY|=HK o [X,Y].
Corollary 4.21. Let X € 8% and let X¢ denote the continuous martingale part of
X (for the definition, see [21; Ch. I, (4.27)]). If H € L(X), then H € L(X°) and

(He X)“=He X"
Proof. Let X = A+ M be a decomposition of X such that H € L, (A)NLL . (M).
Let M = X°+ N be a decomposition of M into a continuous local martingale and a

totally discontinuous local martingale. Then, in view of Proposition 2.16, [(X¢)?, N/] =
0, and hence, [M', M’] = [(X€)", (X¢)/] + [N*, N’]. Consequently, H € L}, .(X¢) and

loc
HeX=HoA+HeoX“+HeoN.

It follows from Lemma 3.5 (e) that H e X¢ is a continuous local martingale. Fur-
thermore, by Theorem 4.19 combined with Proposition 2.16,

[HeN] =Y (H,,AN,)”.
On the other hand, :
[HeN] =Y A(HeN):+|[(HeN)|=> (H,AN,)*+[(H e N).

Hence, (H e N)¢ = 0, which means that H e N is totally discontinuous. As a result,
(He X)“=H e X°. O
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5 Sigma-Martingales

1. Definitions and examples. The proof of the main part of the following statement
is borrowed from [10].

Lemma 5.1. Let X € 8. The following conditions are equivalent:

(i) for each i = 1,...,d, there ezists a sequence of sets D, € P such that D, C
D,i1, UD, =Q xR, and each Ip,  X* is a uniformly integrable martingale;

(i) there exist M € ML and H = (H',..., HY) such that, for each i =1,...,d,
Hie L(M") and X' = X} + H' @ M*;

(iii) there erist N = (N1,..., N%) with N € H' and a strictly positive process K
such that, for each i=1,...,d, K € L(N") and X' = X} + K ¢ N*.

Proof. (i)=(iii) There exists a sequence of sets D,, € P such that D, 1 Q x R,
and, for each 7 = 1,...,d, the process M™ = Ip e X' is a martingale. In view of
Corollary 2.7, there exists a collection (T, )or,,—; of stopping times such that, for each

n € N, the sequence (7,,,) is increasing in m, 7., — oc a.s. and (M™)™mn € H?
m—»0o0

(m,neN, i=1,...,d). We can find a sequence of scalars (,) such that 0 < a,,, <
2=(m+n) and

HCkmn(Mni)TmnHH1 <92~ mtn) o neNi=1,...,d
If we take 7, =0,

n=1m=1
Ni=KeX' i=1,....4d,
then 0 < K < 1 and N* € H'. Using Theorem 4.6, we get X' = Xj+ K o N’
(i=1,....d) with K = K~
(iii)= (ii) This implication is obvious.
(ii)= (i) Using Corollary 2.7, we can find an increasing sequence (7,,)2°; of stop-

ping times such that 7, — oo a.s and (M*)™ € H' foreach i =1,...,d, n € N. Then
the sets

d
i=1
satisfy all the conditions of (i). O

In the discrete-time case, the class of o-martingales coincides with the class of local
martingales (see [22], [36; Ch. II, §1c]). In the continuous-time case (even in the one-
dimensional setting), the situation is different, and the class M, can be strictly larger
than M. The following example was given by M. Emery [14].

Example 5.2 (Emery). Let 7 be a random variable with P{r >t} = e . Let 1
be independent of T with P{n =+1} =P{n= -1} =1/2. Set

X, = 0 ?ft<7',
n/T if t> T,

F=o(r,n), F,=F~. Then X € M, and X ¢ M.
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Proof. Set H, = 1/t,

Mt:{(] %ft<T,
n if t>71.

Then M € Moo, H € Ly (M) C L(M) and H ¢ M = X. Thus, X € M,.
Another way to verify the inclusion X € M, is to consider the sets D, = ) x
{{0} U[1/n;00)} and verify that each Ip, @ X is a uniformly integrable martingale.
Furthermore, for any (F;)-stopping time 7" with P{T" > 0} > 0, we have: E|X,|=
oo. Therefore, X ¢ Mjq.. a

In the above example, there exists a measure Q ~ P such that X is a local martin-
gale (and even a martingale) with respect to this measure. F. Delbaen and W. Schacher-
mayer constructed in [10] a o-martingale that is not a local martingale with respect
to any Q ~ P.

Example 5.3. Let 7, n be the same as in Example 5.2 and let X be the two-
dimensional process defined by

X! = 0 ?ft<7', X2 = —t %ft<7',
n/T if t >, —7+1 ift>T1

Set F =o(r,n), Fr=F;. Then X € M2(P) and X ¢ M} _(P). Moreover, for any

Q # P such that Q ~ P, we have X ¢ M2(Q). In other words, SM(P) = {P}, while
LM(P) = 0.

Proof. In a similar way as above, we prove that X' € M, (P). The process X? is
a (F;, P)-martingale (it is the compensated Poisson process stopped at the time of the
first jump). Thus, X € M2(P).

By the above reasoning, X' ¢ Mo (P). This means that X ¢ Mj (P).

loc

Suppose that Q ~ P and X € M2(Q). Then X? € M,(Q). For any ¢t > 0, the
process X? stopped at the time ¢ is bounded, and therefore, it is a martingale (see
Proposition 5.4). Thus, EqX? = 0 for any ¢ > 0. Set F(t) = Q{7 < t}. We have

0=EqX} = —tQ{r >t} + /Ot(—s + 1) dF(s)
= Q{7 > 1} +Qr < 1} — sF(3)| + /OtF(s) ds
= trQfr<i+ [ P
Therefore,

0=—-1+F'(t)+ F(t), t>0.
Hence, the function G(s) =1 — F(s) satisfies the following differential equation:

Thus, G(t) = e ' implying that Law(7|Q) = Law(7|P).
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For any s > 0, the process Z; = X} — X}, is a o-martingale. Being bounded, it
is a martingale (see Proposition 5.4). Consequently, for any 0 < s < ¢, we have

I(s<r§t)>.

0=EqZi =Eq(X; I(s <7 <t)) =Eq (77
.

Therefore, Eq(n|T) =0 Q-a.s. Since Q ~ P, the random variable 7 takes only values
+1 Q-a.s. We get

Q= +1[r) = Q@ =-1lr) = Quas.
This means that n and 7 are Q-independent. As a result,
Law(71,n|Q) = Law(7, n|P).
Hence, Q = P. This completes the proof. O

2. Properties of o-martingales. The above examples show that a o-martingale
may not be a local martingale. However, under some additional conditions, a o-
martingale is a local martingale.

Proposition 5.4 (Ansel, Stricker). Suppose that X € M, and X is bounded
below. Then X € M.

For the proof, see [1; Corollaire 3.5].

Corollary 5.5. Suppose that X € M, and X is locally bounded. Then X € My .
In particular, if X € M, is continuous, then X € M.

Example 5.2 shows that a stochastic integral with respect to a local martingale
may not be a local martingale. It also shows that a stochastic integral with respect
to a special semimartingale may not be a special semimartingale. In other words, the
classes M), and S, are not stable under the stochastic integration. The next result
shows that the class M, is stable under the stochastic integration. This is one of the
advantages of o-martingales.

Lemma 5.6. If X € M% and H € L(X), then He X € M, .

Proof. By Lemma 5.1, there exist M’ € H' and a predictable processes K such
that, for each i = 1,...,d, K € L(M?) and X' = X} + K e M*. By Theorem 4.7,
HeX =.JeM, where Ji = H'K. Set G = |J|| V1, J=.J/G. By Theorem 4.6,
JeM = Ge(JeM). Since J is bounded, J o M = S  Ji @ M is a uniformly
integrable martingale. As a result, H ¢ X € M,. O

3. Characterization of o-martingales. Let X € S and let (B,C,v) denote
its characteristics with respect to a truncation function h (for the definitions, see [21;
Ch. 1II, §2a]). It is known that there exist a predictable increasing process A € Ao,
predictable processes b, ¢ € L(A) (i,j = 1,...,d) and a transition kernel K from
(2 xRy, P) to (R, B(R?)) such that

B'=beA CV=cleA v(wdtdr)=K(w,tdr)dA(w). (5.1)
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Proposition 5.7. (a) The process X belongs to ML _ if and only if

loc

| el € L
{llzf[>1}
and, for P ® dA-a.e. (w,t),
b(w,t) + /(x — h(2))K (w,t,dz) = 0.
R

(b) The process X belongs to M2 if and only if, for P® dA-a.e. (w,t),

/ |z|| K (w, t,dx) < oo
{lll>1}

and
b(w,t) + /R(x — h(2))K (w,t,dz) = 0.

For the proof of (a), see [21; Ch. II, (2.30)]. For the proof of (b), see [24; Lemma 3].

Remark. The paper [16] by T. Goll and J. Kallsen contains a similar characterization
of martingales. O

4. Processes with independent increments. Let PZZ (resp: PZZ?) denote
the class of one-dimensional (resp: d-dimensional) processes with (F;)-independent
increments, i.e.

PIT = {X = (Xy)>0: X is (F)-adapted and,
for any s <t, X; — X, is independent of .7-"3}.

Let LP (resp: L£P") denote the class of one-dimensional (resp: d-dimensional) (F;)-
Lévy processes, i.e.

LP ={X = (X;)z0: X is a (F,)-adapted Lévy process
and, for any s <t, X; — X is independent of 7:5}-

Let M (resp: M%) denote the class of one-dimensional (resp: d-dimensional) (F;)-
martingales.
The results given below lead to the following conclusions: diagrammatically,

M4 D M. ) M4
MINPITY > ME NPIT* = MINPIT?

loc

MENLPT = ME.NLPY = MINLPY

where all the inclusions can be made strict by an appropriate choice of the filtered
probability space.

The example of a local martingale that is not a martingale is well known: it is
sufficient to consider the process X = ||B||™", where B is a 3-dimensional Brownian
motion started at a point that is not equal to zero (for more details, see [34; Ch. V,
(2.13))).
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Theorem 5.8. Let X € PII?. Then the following conditions are equivalent:
( ) X € Mloc;
(i) X € M2,

Proof. Suppose that X € M{_ NPII?. Take the truncation function h(z) =
zI(||z|] < 1). By [21; Ch. II, (4.15)], there exists a deterministic version of the charac-
teristics (B, C,v) of the process X, and moreover, for any ¢ > 0,

EeiMX0) :exp{i<)\, B(t)) — %()\, C(t)N)

Jr/ﬂﬂt » /Rd (e — 1 — i\, 2)I(||z]| < 1))K(s,dm)dA(s)} (5.2)
< I [H/Rd i) —1)K(s,dx)AA(s)],

0,7

where

— ZAB(S)

s<t
J={t>0:v({t} xR?) >0} = {t>0:P{AX, # 0} > 0},
A is an increasing function and K is a transition kernel from (R.,B(R;)) to

(R, B(R?)) such that v(dt,dz) = K(t,dx)dA(t).
Fix ¢ > 0. By Proposition 5.7 (a),

t
// 2]/ K (s, dz)dA(s) < o
0 J{|lzl|>1}

3 / 2llK (5, dz) AA(s) <

sefo,ns  llzl>1}

Hence,

and, by the definition of the compensator,

E ) JAXI(JAX,]| > 1)]| < cc. (5.3)

se(0,t)nJ

Let s > 0. Let (7,)32, be a localizing sequence for X. There exists m € N
such that P{7, > s} > 0. The random variable AX7™ is integrable and EAX™ = 0.
Note that AX!™ = AX,I(r, > s) and AX; is independent of I(7,, > s) since
{Tm > s} € Fs_. Hence, AX, is integrable and EAX, = 0.

Combining this with (5.3), we deduce that

Y IEAXI(JAX[| < D < oe. (5.4)

s€f0,¢]NJ

/ /|m||<1} (s, da)dA(s) <
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(see [21; Ch. II, (2.13)]), and hence,
Y EAXI(JAX] < D < oo,
s€f0,¢]NJ

Using this together with (5.4) and taking into account the independence of AXI(||AX|| < 1)
for different s, we conclude that the sum

S AXI(JAX,] 1)

se(0,t)nJg

converges in L?. Hence, it also converges in L'. Taking (5.3) into account, we conclude

that the sum
- Y ax

s€0,t)NT

converges in L'. Moreover, it follows from the definition of the compensator and the
independence of AX; for different s that

0 = T Ee®*¥9 = J[ [EeMI(AX, #0)+ P{AX, = 0}]

se[0,t)nJ se(0,tnJg
= H [/ MK (s, dr)AA(s) +1 — K (s, ]Rd)AA(s)} (5.5)
se[0,t)nJ Rd '
= H [1 —I—/ (eio"m) —1)K(s, dx)AA(s)].
s€[0,4nJ Rd

Let Y; be an infinitely divisible random variable that is independent of Z; and has
the characteristic function

Eéwm:wn{uké@y—;xcunyﬁé@ww—l—uhwmmﬂélnmwﬂ}

where

n(dx) :/[OﬂNCK(S,dx)dA(S).

aw

It follows from (5.2) and (5.5) that Z; + Y} 2 X,. In view of the inequality

t
[ elmtan = [ el K dndaes) < .
tllz([>1} 0 J{[ll>1}

we conclude that E[|Y;]| < co and

ﬂﬂ:En:§®+/ ony(de) = / / K (s, dx)dA(s)
{llzl|>1} 0,¢n.Je {\|$||>1}

(see [35; §25]). Furthermore, E||Z;|| < oo and EZ; = 0. As a result, E||X;|| < oo and
EX; = ¢(t). This, combined with the independence of increments of X, shows that
X — ¢(+) is a martingale. Hence, ¢(-) is a local martingale. On the other hand, ¢ is
continuous (this follows from the explicit form of ¢ and the definition of the set .J),
and therefore, ¢ = 0 (see [34; Ch. IV, (1.2)]). This completes the proof. O
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Example 5.9. Let (&,)°2, be a sequence of independent random variables with

1 1
P@;wnziﬁ P@f:%ﬁziﬁ,P@Wzm: N

Take tnzl—% and set
Xp= Y &, 120

{n:t, <t}
(with probability 1, only a finite number of &, differ from zero, and hence, X is well
defined). Then X € M, NPIL, but X ¢ Mo (we consider the filtration F, = F;X).
Proof. Take D, = Q x ([0,1 — 1] U[1,00)). Then, for any n € N, Ip, e X is
a uniformly integrable martingale, and hence, X € M,. The inclusion X € PZT is

obvious.
Suppose that X € M... Using Proposition 5.7 (a) and the same arguments as in

the previous proof, we deduce that

E) AN I(JAX,]| > 1)] < oo.

s<1
On the other hand,
ED JAXJ(AX] > 1)] = ) El&] = oc.
s<1 n=1

Hence, X ¢ M.

Theorem 5.10. Let X be a d-dimensional Lévy process with
. 1 .
EeiMXo) — exp{t[i()\, b) — 5()\,0)\) +/ (e — 1 — i\, 2)I(||z]| < 1))77(dx)] }
Rd

Then the following conditions are equivalent:
(i) X e Mg;
(i) X € Mi;
(iii) X € M4;
(

iv) we have

[ alintas) < .
tllzl>1}

b+ / zn(dz) = 0.
{ll=(>1}

Proof. (i)=-(iv) The characteristics of X with respect to the truncation function
h(z) = zI(]|z|| < 1) are given by (5.1) with A; = ¢, b(w,t) = b and K(w,t,dz) =
n(dz). Now, the desired implication follows from Proposition 5.7 (b).

(iv) = (iii) It follows from (iv) that, for any ¢t > 0, E|[|X}|| < oo and EX; = 0
(see [35; §25]). This obviously yields (iii).

(iii)= (ii) = (i) These implications are obvious. O
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6 Vector Stochastic Integrals in the First
Fundamental Theorem of Asset Pricing

1. Componentwise stochastic integrals. Let us compare the notion of the vector
stochastic integral with the notion of the componentwise stochastic integral.

Definition 6.1. Let X € 8. A d-dimensional process H is componentwise X -
integrable if H' € L(X?) for each ¢ = 1,...,d. The componentwise stochastic integral
is defined as the sum Y%  H'e X'

Remark. Any locally bounded predictable process H is componentwise X -
integrable. a

Theorem 6.2. If H is componentwise X -integrable, then H is X -integrable and

d
H.X:ZHZ’.X".

i=1

Proof. Let X' = A+ M’ be a decomposition such that H® € L,.(A") N LL .(M?).
Set A = (A',...,AY), M = (M',...,M?%). Let K, be the d-dimensional process
defined as K; = (0,...,H',...,0), where H' stands in the i-th place. Then K; €

Lyar(A)N L (M) for : = 1,...,d. Furthermore, K; @« X = H' @ X*. By Theorem 4.3,

loc
d d d
HeX = <ZKZ-> eX=Y K eX=Y Hex!
i=1 i=1 i=1
This completes the proof. O

Thus, if the componentwise stochastic integral exists, then the vector stochastic
integral also exists and the integrals coincide. The following example shows that the
reverse is not true.

Example 6.3. Let Y € § and K be a one-dimensional predictable process that
does not belong to L(Y). Set

X =(V,Y), H=(K -K).

Then H € L(X) and H ¢ X = 0, while the componentwise stochastic integral of H
with respect to X does not exist.

Proof. Straightforward. U

We will now turn to the example, which shows that the space of componentwise
stochastic integrals with respect to a fixed multidimensional semimartingale X may
not be closed in the Emery topology. This was first noticed by L. Galtchouk [15]. The
example that we give is taken from [19].
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Example 6.4. Let B', B? be two independent Brownian motions on some filtered
probability space. Set J, =1t and define the two-dimensional process X by

X'=B' X’ =(1-J)eB'+.JeB
Then the space

Lo(X) = {22: H'eX':H'c L(Xi)}

i=1

15 not closed in the Emery topology.

Proof. For any ¢ > 0,

1

 J+e

and, in view of Theorems 4.3, 4.6,

<1— 1 >0X1+ 1 o X? = i e B! —
J+e

For each t > 0,

€ ¢ € 2 ¢ € 2
BF| = ds = d 0.
[J+5. ]t /0<J5+5> 5 /0<1/5+5> 83

Hence, Z. % B?, where Z. denotes the process given by (6.1). Note that 7. €
I

Lo(X).
Suppose now that there exist processes H' € L(X") (i = 1,2) such that

H'e X'+ H? ¢« X? = B2
Then we obtain the equality M' = M?, where

M'=(H'+(1-J)H?) e B' = K' ¢ B',
M?=(1—-JH?) e B> = K” e B*.

It follows from Theorem 4.19 that [Kl e Bl K%e BQ} = 0. Hence, M! = M? = 0. By
Lemma 3.5 (b),
1—-JH*(=K*) =0 Pxpu-ae.,

where p7, denotes the Lebesgue measure on R, . Thus,
2 1 1
H* = —, Hzl—j P x ur-a.e.

Consequently, H' ¢ L] (B').

The inclusion H! € L(X') means that there exists a decomposition X' = A + N
with A € V, N € My, such that H' € Ly, (A) N LL . (N). According to Proposi-
tion 2.16,

[Nl = [N+ D (AN

s<t
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where N°¢ is the continuous martingale part of N (see [21; Ch. I, (4.18)]). Since X'
is continuous, we have N¢ = X'. Thus, [N] = [X'] + D, where D € V*. Now, the
inclusion H' € L} .(N) implies that H' € L| .(X') = L\ .(B").

loc loc loc

We arrive at a contradiction, which shows that B* ¢ L (X). Thus, Lo(X) is not
closed in the Emery topology. a

Remark. The space
Lp(X)={H e X : H is predictable and locally bounded}

may not be closed in the Emery topology even in the one-dimensional case. For in-
stance, this is the case if X is a Brownian motion. O

2. The First Fundamental Theorem of Asset Pricing. Recall that, in the
general case, this theorem states that each of the conditions (NFLVR), (NFLBR) is
equivalent to the existence of an equivalent o-martingale measure. The definition of
(NFLVR), (NFLBR) employs the notion of a strategy (Definition 1.4), which, in turn,
is based on the vector stochastic integrals. We will indicate this by the subscript V':
(NFLVR)y, (NFLBR)y . Then the First Fundamental Theorem of Asset Pricing can
be expressed as follows:

(NFLVR)y, <= (NFLBR)y, <= SM(P) # {.

In the definition of a strategy, one could replace the condition that H is X-
integrable by the condition that H is componentwise X -integrable. This yields a
smaller class of strategies and, as a result, weaker notions (NFLVR)c, (NFLBR)c.
These properties could even more be weakened by considering only locally bounded in-
tegrands H . This yields the properties (NFLVR)p and (NFLBR)g. The implications
below follow directly from the definitions:

(NFLBR)s <= (NFLBR)¢ <= (NFLBR)y

Y ) )
(NFLVR)p <= (NFLVR)c <= (NFLVR)y.

The question arises: which of these properties are sufficient for the existence of an
equivalent o-martingale measure? The following statement is proved in [5].

Proposition 6.5. The properties (NFLBR)p, (NFLBR)c are sufficient for the
eristence of an equivalent o-martingale measure, while (NFLVR)g, (NFLVR)c do
not imply the existence of such a measure, i.e.

(NFLBR)p <= (NFLBR)¢ <= (NFLBR)y <= SM(P)#10

4 % 4@ |
(NFLVR); <= (NFLVR): <= (NFLVR)y.
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7 Second Fundamental Theorem of Asset Pricing

1. Proof of the Theorem. Throughout this subsection, we suppose that Fy is
P-trivial and F = \/,5, Fi.

Lemma 7.1. Let X € 8. Then the space
L'(X)={r+HeX:2€R HeL(X)and He X € H'} (7.1)

is a stable subspace of H*.

Proof. The convergence in H! is stronger than the convergence in the Emery
topology. Therefore, in view of Proposition 4.10, the space

Lo(X)={HeX :HeL(X)and He X e H'} ={He X :He LX)} NH" (7.2)

is closed in H!.

By the Hahn-Banach theorem, there exists a continuous linear functional ¢ on H!
such that ¢ equals zero on £{(X) and ¢ is not equal to zero on the process Z = 1.
If (z, + H, e X) is a sequence of elements of £'(X) that converges in H', then
o(x, + H, @ X) also converges. We have ¢(z, + H,, ¢ X) = ax,,, where a # 0. Hence,
the sequence (r,) converges in R and the sequence (H, e X) converges in H'. So, the
closedness of £}(X) implies the closedness of £'(X).

For any H € L(X) and any stopping time 7, we have

r+(HeX) =x+ (HI[[O,TH) o X.
Consequently, £'(X) is stable. O

Proof of Theorem 1.17. We will prove only statement (a). Statement (b) follows
from (a) and Proposition 5.4.

(i)=(ii) Suppose that the set SM(P) contains two different measures Q; and
Qz. Take A € F and set f = I4. There exist z € R and H € L(X) such that
Iy=12+ (H e X)s and H e X is uniformly bounded. The stochastic integral H e X
is the same for Q; and Q2 (see Theorem 4.14). It follows from Lemma 5.6 that H ¢ X
belongs to M,(Q;) and M,(Qz). By Proposition 5.4, H e X is a local martingale
with respect to Q; and Q2. As H e X is uniformly bounded, we get

Ql (A) EQ1 (
QQ(A) EQz(
Since A is arbitrary, Q; = Q2. As a result, |SM(P)| = 1.
(ii) = (iii) Suppose that |[SM(P)| = 1. Let Q be the unique measure in SM(P).
Let us prove that X has the predictable representation property with respect to Q.
Suppose that £1(X) # H'(Q), where £'(X) is defined in (7.1). Using Propo-
sition 2.8, Lemma 7.1 and the Hahn-Banach theorem, we get the existence of N €
BMO(Q) such that N # 0 and Eq(NyoMy) = 0 for any M € £'(X). By Propo-
sition 2.11, N L M for any M € L£'(X). Since BMO(Q) C H{Z.(Q), there exists a
stopping time 7 such that N7 € H*(Q) and N7 # 0. We have N™ L M for each

(H.X)oo) =1,

xr +
v+ (HeX)y) = 1.
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M € LY(X) (see [21; Ch. I, (4.13)]). One more application of Proposition 2.11 yields:
EqQ(NLMy) =0 for any M € L}(X).
Set
N’T

Z=14+-———
2[IN7 |3 (@)

As £'(X) contains the constant processes and Fy is Q-trivial, we have Ny = 0. Thus,
EqQqZ« = 1. Furthermore, Z > 1/2 and Eq(Z,My) = 0 for any M € L{(X), where
L3(X) is defined in (7.2).

By Lemma 5.1, X admits the representation X* = X! + (Q)K e Y, where Y’ €
HY(Q) (i=1,...,d). In view of Theorem 4.7, L{(X) = L}(Y). For any p < ¢, A €
Fp, i=1,...,d, the process M; = I,(Y},,—Y},,) (t > 0) belongs to L§(Y) = Lj(X).
Therefore,

EqQ(ZooMo) = Eq(Zoc 14 (Y] —Y})) = 0.

This means that Y is a martingale under the measure Q defined as Q = Z..Q. Ap-
plying Theorem 4.14, we get

X=X+ (QKeY =X+ (QKeY', i=1,....4d

Hence, X is a (F;, Q)-o-martingale. As |[SM(P)| = 1, we arrive at: Q = Q and
Z+ = 1. Consequently, N™ = 0 that leads to a contradiction. The contradiction
shows that £'(X) = H'(Q).

Thus, any M € H'(Q) admits the representation M = My+ He X . By localization
(see Corollary 2.7), this result is extended to all (F;, Q)-local martingales.

(iii)= (i) Let Q be an element of SM(P) such that X has the predictable represen-
tation property with respect to Q. Let f be a bounded F-measurable function. Set
v =Eqf, M, = Eq(f|F:). There exists H € L(X) such that M =z + (Q)H ¢ X. The
integral H o X is the same under Q and the original measure P (see Theorem 4.14).
As F =\V,5¢ Fi, we have

f=Mx=2+ (H ®X)q.
This proves that the model is complete. O

Remark. The Second Fundamental Theorem of Asset Pricing in the discrete-time
case (Proposition 1.14) can easily be derived from Theorem 1.17. This is done as
follows. Let (Q,f, (Fn)o<n<n, P) be a filtered probability space. Define (F;)i>o by

7 _JF itn<t<nt1<n,
T FEy if t> N

Any discrete-time process (Z,)o<n<ny can be transformed into the corresponding
continuous-time process (Z;);>o as follows:

= [z, itn<t<n+1<N,
T )zy if t>N.
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Then H is (]T"t)—predictable if and only if forany n =1,..., N, H, is F,_;-measurable
and H, is Fy-measurable. I In this case, H € L(X) (note that X is piecewise constant)
and

d [tIAN
(HoX) =Y Y Hi(Xj—X],), t>0.
i=1 k=1
Thus, the discrete-time model (Q,}", (Fn)o<n<n, P; (Xn)ogngN) is complete if and
only if the corresponding continuous-time model (Q, F, (Fi)i>0, P; (Xt)tzo) is complete.
This yields the desired statement. a

2. Examples and counterexamples. The notion of completeness (Defini-
tion 1.15) could be strengthened by considering only the strategies = = (x, H), for
which H is componentwise X -integrable. However, the obtained notion of componen-
twise completeness will not be equivalent to conditions (ii), (iii) of Theorem 1.17.

Example 7.2. Let B', B? be two independent Brownian motions on some filtered
probability space. Set J, =1t and define the two-dimensional process X by

X'=B', X?=(1-J)eB'+JeB

Set Fy = F*, F=V,s9Ft- Then SM(P) = {P}, while the model is not component-
wise complete. -

Proof. For any (F;,P)-local martingale M, there exist processes K' € L(B!),
K? € L(B?) such that

M= M,+ K'eB!'+ K? e B?
(see [34; Ch. V, (3.5)]). Furthermore, B' = X! and B> = He X, where H = (H', H?)
is given by .
2

7 =7
(the process H is X-integrable, but not componentwise X -integrable). Applying
Theorems 4.1 and 4.6, we deduce that X has the predictable representation property
with respect to P. By Theorem 1.17, SM(P) = {P}.

Now, set

H =1-

r=inf{t >0:|B}| =1}, f= B2
Suppose that there exists a strategy m = (z, H) that satisfies the conditions of Defi-
nition 1.15 and such that H is componentwise X -integrable. It follows from Propo-
sition 5.4 that H e X is a local martingale. Being bounded, it is a martingale. This
leads to the equality H e X = (B?)7. Using the same arguments as in Example 6.4, we
arrive at a contradiction. It shows that the model is not componentwise complete. O

One could weaken the notion of completeness by eliminating condition i) of Defini-
tion 1.15. The question arises whether Theorem 1.17 remains true with this weakened
notion of the completeness. The answer to this question is negative as shown by the
following example.

Example 7.3. Let Q = C(Ry) and X be the coordinate process on C(R,). Set
Fi = .7:tX, F = \/1t>0 F;. Let Q be the distribution of the process 1) @ B and (5 be the
distribution of the process 21p @ B, where ¢, = I(t > 1) and B is a Brownian motion.
Set P =2(Q+ Q). Then |SM(P)| > 1, while, for any bounded F-measurable function
[, there exists a strategy m = (x, H) that satisfies conditions ii), iii) of Definition 1.15.
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Proof. For any a € (0,1), the measure aQ + (1 — a)Q belongs to SM(P). Thus,
SM(P) is infinite.
Let us prove the second statement. Let f be a bounded F-measurable function.
Set
v=essupf, Vi=Eq(f|F), Vi=Eg(fIF), t>0.

There exist predictable processes K, K such that
Y =Eqf +(Q)K e X,
Y =Egf + (QK ¢ X.
There exist F;-measurable disjoint sets A, A such that Q(A) =1, Q(A) = 1. Set

(w) = inf{t > 1: 2+ X;(w) — X1(w) =Yi(w)} if we A,
TE Vit > 10+ X () - Xy(w) = Vi) if we A,

0 if t<1,
if 1<t<7(w),
Hife) = N
Kiy(w) if 7(w) <tand w € A,
Ki(w) if 7(w) < tand w e A.
Then the strategy m = (x, H) satisfies conditions ii) and iii) of Definition 1.15. O

Remark. Note that, for the pair (z, H) constructed in the above example, the

process x+ H e X is uniformly bounded below. This means that (x, H) is an admissible
strategy (see [9], [36; Ch. VII, §la]). O

In the discrete-time case with a finite time horizon, the completeness implies that
Fn = FX up to P-null sets (see [22], [36; Ch. V, §4f]). In the continuous-time case,

n
this is not true as shown by the following example.

Example 7.4. Let B be a Brownian motion. Set X = sgnB e B, F, = FP,
F = Vo Fi. Then the model is complete, while F; # FX.

Proof. Any (F;)-local martingale M admits the representation
M=My+HeB=D»M+ (HsgnB)e X,

and consequently, the model is complete. On the other hand, F* = FB FP
(see [34; Ch. VI, (2.2)]). O

Remark. For a discrete-time model (Q, F, (Fu)n>0, P; (Xn)nZO) with an infinite time
horizon, the completeness implies that F, = F.* . This can be shown as follows. If this
model is complete, then, by Theorem 1.17, any Q-local martingale can be represented
as a stochastic integral with respect to X (here, Q is the unique measure in SM(P)).
Hence, for each N € N, the “truncated” model (Q,]—", (Fn)o<n<n, P; (Xn)ogngN) is
complete. This implies that F, = F.X for n < N. As N is arbitrary, we get the
result. O

Our last example shows that a model can be complete, whereas SM(P) is empty
(i.e. the model is not arbitrage-free).
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Example 7.5. Let £ be a random variable with P{¢ = +1} = P{¢ = —1} = 1/2.
Set X, =n&, F,=FX (n=0,1,2). Then the model is complete, while SM(P) = ().

Proof. Straightforward. a

Acknowledgement. We are thankful to Yu.M. Kabanov for many important remarks
and discussions.
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processes integrable with respect to a finite-variation process A
processes integrable with respect to a local martingale M
processes integrable with respect to a semimartingale X
class of equivalent local martingale measures
one-dimensional martingales

d-dimensional martingales

one-dimensional local martingales

d-dimensional local martingales

one-dimensional o-martingales

d-dimensional o-martingales

class of equivalent martingale measures

No-Arbitrage property
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d-dimensional processes with independent increments
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the capital process of a strategy m 4,5
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vector stochastic integral with respect to a semimartingale X 21
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process A 20
vector stochastic integral with respect to a local martingale M 18
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quadratic variation of a semimartingale X 14
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Davis inequalities, 12
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