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Abstract. Let B be a one-dimensional Brownian motion and f : R — R be
a Borel function that is locally integrable on R\ {0}. We present necessary and
sufficient conditions (in terms of the function f) for the existence of the limit

¢
lim/ f(Bs) I(|Bs| > ¢)ds
el0 Jo
in probability and almost surely. This limit (if it exists) can be called the principal
value of the integral f(f f(Bs)ds.

The obtained results are applied to give an extension of It6’s formula with
the principal value as the covariation term.

We also show that the principal value defines a continuous additive functional
of zero energy.
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1 Introduction

1. Existence of the principal values. Let 7' € R, and (B;);>o be a Brownian
motion started at By € R. Suppose that f : R — R is a locally integrable on R
function (notation: f € L},.(R)), i.e.

loc
M
VM >0, / |f(z)|dx < oc.
-M

It follows from the properties of the Brownian local times (see Section 2 below) that
in this case we have

T
/ |f(Bs)|ds < oo as.,
0



and therefore, there exists almost surely a Lebesgue integral

| #myas (1)

Suppose now that f is not locally integrable. Then, by the Engelbert-Schmidt
zero-one law (see [3]), we have

P{/0T|f(Bs)|ds:oo} > 0.

So, the Lebesgue integral (1.1) does not exist. However, in some special cases there
exists a principal value of integral (1.1). Take, for example, f(z) = |z|”sgnx with
v > —3/2. Then, due to the properties of the Brownian local times (see the book
[9; Problem 1, p. 72] by K. It6 and H.P. McKean for the case ¥ = —1 and the paper
[1] by Ph. Biane and M. Yor for the case v > —3/2), there exists almost surely a limit

v.p./0 f(Bs)ds::lgﬁ)l/O F(By) I(|B,| > ¢) ds. (1.2)

The question arises: for which functions does limit (1.2) exist? We assume from the
outset that f € L} _(R\ {0}) (i.e. condition (3.1) below is satisfied). So, the integrals
in the right-hand side of (1.2) are well defined. We present in Section 3 the necessary
and sufficient conditions for the existence of limit (1.2) in probability and almost surely
(see Theorems 3.1 and 3.2). The conditions are given in nonrandom terms, i.e. in terms
of the function f. We also present an example of the function f for which limit (1.2)
exists in probability but does not exist almost surely.

The principal values of the form (1.2) are closely connected with various areas of the
stochastic analysis. In particular, they are directly related to the extensions of 1to’s
formula as well as to the continuous zero-energy additive functionals of a Brownian
motion. Connections between the principal values and other topics are described in
the paper [21] by T. Yamada. The distributional properties of the principal values for
the functions f of some special form are discussed in the book [25; Ch. 10] by M. Yor.
Let us also mention the paper [8] by Y. Hu, Z. Shi and the paper [7] by Y. Hu, where
various laws of the iterated logarithm are derived for the principal value (1.2) with

flz)=1/x.

2. An extension of Itd’s formula. We prove in Section 4 the following extension
of 1t6’s formula (see Theorem 4.1): if ¢ is absolutely continuous on R, ¢’ is absolutely
continuous on R\ {0} and limit (1.2) exists in probability for f = ¢”, then

t t
©(By) = ¢(By) + / ¢'(Bs) dBs + %aLg + %v.p./ " (Bs) ds, (1.3)
0 0
where « is a constant (specified in Theorem 4.1) and L is the local time of B.

There exist several other extensions of It6’s formula: the Ito-Tanaka-Meyer formula
(see, for example, [18; Ch. VI, (1.5)]), the Bouleau-Yor formula (see [2], [23]) and the
Follmer-Protter-Shiryaev formula (see [5]). All these extensions differ in the class of
the functions ¢ to which they can be applied and also in the form of the covariation
term. In Section 4, we cite the precise formulations of the above-mentioned extensions
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and show the relation between these extensions and formula (1.3) (see Figure 2 in
Section 4).

We also present an example which shows that formula (1.3) could be useful in the
theory of the optimal stopping (see Example 4.2).

The comparison of (1.3) and the Bouleau-Yor formula yields a representation of a
principal value as an integral with respect to the local time (see Corollary 4.5). The
comparison of (1.3) and the Follmer-Protter-Shiryaev formula yields a representation
of a principal value as a quadratic covariation (see Corollary 4.4).

3. Properties of the principal values. Using the above extension of 1to’s
formula, we prove in Section 5 that the process v.p.f(;t f(Bs)ds (if limit (1.2) exists in
probability) has a continuous ”in ¢” version (see Theorem 5.1).

We also prove that this process is an additive functional of a Brownian motion and
it has zero energy (see Theorems 5.3, 5.5).

The continuous additive functionals of zero energy are well studied (see, for example,
the book [6; Ch. 5] by M. Fukushima, Y. Oshima and M. Takeda). In particular, the
paper [16] by Y. Oshima and T. Yamada presents a complete characterization of the
continuous zero-energy additive functionals of a Brownian motion.

2 Basic Definitions and Facts

This section contains the known definitions and facts that will be used in the subsequent
reasoning.

1. Local times. As above, ' € R; and (B,);>o is a Brownian motion started at
By € R. There exists a continuous process (L%.),cr called the local time of B, such
that, for any locally integrable function h,

/OTh(Bs)ds:/RL;”ph(x) dr a.s. (2.1)

(see [18; Ch. VI, §1]).

As stated in the following proposition, the local time of a Brownian motion is a
semimartingale.

Proposition 2.1. There ezist a filtration (G;)zer and a (G.)-adapted process
(Bz)zer such that

/ |B:| dz < 0o a.s.

o0

and the process

LQZUF_/ By dy

is a (Gz)-local martingale with the quadratic variation ffoo 4L%. dy. Moreover, [ is
almost surely continuous at © = 0.

For the proof, see [11; Théoreme II.1.1].



Proposition 2.2. Set Sp = sup,cp Bs, It = infs<r Bs. Then

P{Vz € (Ir,Sr), L} >0} =1,

For the proof, see [18; Ch. VI, §2].

Proposition 2.3. Let a € R. The r.v. L% has the same distribution as
(St —|a— Bqo|) V0, where Sp = sup,<7 B, .

For a = By, this statement follows from P. Lévy’s theorem (see [18; Ch. VI, (2.3)]).
For a # By, one should apply the same reasoning as in the proof of P. Lévy’s theorem
(its proof is based on the Skorokhod lemma) to get the desired result.

2. Bessel processes. Let § > 0, a > 0. The solution of the stochastic differential
equation

t
Yt:a+6t+2/ VIV dw, (2.2)
0

is called the square of a &-dimensional Bessel process started at a. (Equation (2.2) is
known to have a unique solution).

Notation. The square of a §-dimensional Bessel process started at a will be desig-
nated as BESQ’(a). The distribution of a BESQ’(a) on [0,1] will be denoted as Q%*
(it is a measure on C([0,¢])).

Let [c,d] C R. By a BESQ’(a) on [c, d] we will mean the process obtained from a
BESQ’(a) on [0,d — ¢] by the shift t — t + c. O

Remark. If 6 € N, then Q%' coincides with the distribution of the process
(IWslI?)seqo, - where (Wy)sepo,q is a -dimensional Brownian motion started at a point
Wy € R® with ||Wp||> = a (this is a consequence of 1t6’s formula applied to |[W]]?). O

Proposition 2.4. Suppose that 6,m € [2,00) and a > 0. Then, for any t > 0,
a,t n,t
Qp' ~ QP*.
The proof of this statement can be found in the papers [22], [24], where the precise

form of the density is also given. Another proof of the above Proposition follows from
the general theory of change of measure (see [10; Ch. IV, §4b]).

3. Bessel Bridges. Let (X;)scp4 be the coordinate process on C([0,1]), i.e.
X, : C([0,1]) > x +— x(s). We denote by Qg’j) (b > 0) the regular conditional distribu-
tion of Q%' with respect to o(X;). In other words, for any Borel sets A C C([0,1])
and D C [0, 00),

QAN (X e DY) = [ Qia(a) (@),
D
where p = Law(X;|Q%'). There exists a unique modification of QZ’; such that the map

(a,b) — Qg’j) is continuous in the weak topology on probability measures (see [17], [18;
Ch. XI, §3]). In what follows, we will always choose such a modification of Qg”i.

Definition 2.5. The measure QZ’E is called the law of the §-dimensional Squared
Bessel Bridge from a to b over [0,1].



Proposition 2.6. Let (Z)scjo be a process such that
Law(Z,; 0 < s < t) = Q).

Then
Law(Z,_s; 0 < s <t) = QL.

For the proof, see [4].
Proposition 2.7. Suppose that 6 > 2, a >0, b > 0. Fiz 0 < s < t. Then the

restrictions of QZ’; and Q%' to C([0,s]) are equivalent.

For the proof, see [4].

3 Existence of the Principal Values

1. The results. We will investigate here the existence of limit (1.2) in probability
and almost surely. The integrals in the right-hand side of (1.2) are the usual Lebesgue
integrals. Using equality (2.1) and Proposition 2.2, one can easily note that these
integrals exist almost surely if and only if

V0<e< M < oo, /|f(x)|[(6§|x|§M)dx<oo. (3.1)
R

Theorem 3.1. Suppose that f € L}, (R \ {0}), i.e. [ satisfies condition (3.1).
Limit (1.2) exists in probability if and only if the following conditions are satisfied:
(i) there exists a limit

hm/ F@) (|2 > ) do (3.2)

(ii) for the function F(x f f(y)dy, one has
/0 F2(z)dx < oo, eF2 () v 0; (3.3)
(iii) for the function F_(z) = [*, f(y)dy, one has
0
/ F(a)de <oo,  [e[F2(e) =0 (3.4)
1 €

Theorem 3.2. Suppose that f € L} (R\ {0}). Limit (1.2) exists almost surely if
and only if the following conditions are satisfied:
(i) there exists limit (3 2);

(ii) the function F.(x f f(y) dy satisfies condition (3.3), and, for any o > 0,
11 { —azx }

— exp dx < o0o; 3.5

A T Sup0<y§m yQFi (?J) ( )

(iii) the function F_(z) = [*, f(y) dy satisfies condition (3.4), and, for any o> 0,
01 { —alz| }

— exp dx < oc. (3.6)
/1 |$| SUPz<y<0 ?J2FE (y)



Remarks. (i) The conditions for the existence of limit (1.2) depend neither on T
nor on By.

(ii) Let us consider the function f of the form: f(z) = |z|"sgnx. If v > —3/2, then
f satisfies the conditions of Theorem 3.2, and thus, limit (1.2) exists almost surely. If
v < —=3/2, then f does not satisfy conditions (ii) and (iii) of Theorem 3.1, and thus,
limit (1.2) in probability does not exist.

(iii) Condition (3.5) is equivalent to the following one: W.F, (¢) %) 0, where W

is a Brownian motion started at zero (see the paper [13; Proposition 15] by T. Jeulin
and M. Yor). In other words, for any o > 0, the function «|F|™" is an upper function
of a Brownian motion.

(iv) As pointed out by M. Yor (in a personal discussion), condition (ii) of Theo-
rem 3.1 on its own is equivalent to the existence in probability of the limit

i [ ' f@) (L5 — L) da.

el0

where L is the local time of B. O

Theorem 3.1 leads to

Corollary 3.3. Suppose that f(z) = 22 where g € L2 (R), i.c.

T loc

VM >0, /_M (g(x))*dx < oc.

M

Then limit (1.2) ezists in probability if and only if there exists a limit

nm/1 9 112l > &) da

el0 1 X
Proof. It follows from Hardy’s L2-inequality (see, for example, [12; Lemme 7])

that, for
1
o~ g\y
Hg(x) =/ —(y)dy,

we have

[y <o [ o) <o,

~ 2
e(Hg(e)) $> 0.
Thus, f satisfies condition (ii) of Theorem 3.1. In a similar way, we verify that f

satisfies condition (iii) of this theorem. Hence, limit (1.2) exists in probability if and
only if f satisfies condition (i) of Theorem 3.1. O

2. The proofs. Theorems 3.1 and 3.2 follow from Lemmas 3.4-3.8 given below.
The scheme of the proof is illustrated in Figure 1.



Ellim/ F(B) I(|B,| > <) ds

€l0

U (Lemma 3.4)

1
angl/ FOVI(H] > ¢) dt
€ -1

u (Lemma 3.5)

ngg]l/lf(t)l(

] > e)dt, Elhm/f YWl > e)dt, Hlun/f OW2L([t] > )dt

[] (Lemma 3.6)

condition (

is satlsﬁed

Elhm/f YWdt, Elhm/ f()Wdt, Elhm/f OWEI([t| > e)dt

u (Lemma 3.7)

condition (i)
is satisfied,

condition (ii) condition (iii)

Elhm/f HWZI(|t| > e)dt

is satisfied, is satisfied, 10

[] (Lemma 3.8)

condition (i) condition (ii) condition (iii)
is satisfied, is satisfied, is satisfied

Figure 1. The scheme of the proof of Theorems 3.1, 3.2

Here, (By)¢>0 is a Brownian motion on [0, 00) started at By
(Y)te[—1,1] is a BESQ?(0) on [—1,1];
(Wi)ie[-1,1) is a Brownian motion on [~1,1] with Wy = 0.




Lemma 3.4. Let (Y)ie[ 1.1 be a BESQ*(0) on [—1,1]. Then limit (1.2) exists in
probability (resp: almost surely) if and only if the limit

1
nigl/ FOVI(] > o) dt (3.7)
&0 J 1
exists in probability (resp: almost surely).
Proof. Fix b € (0,1). Set
U, = LE, —b<t<,

t
Mt:LtT—/ﬁsds, —b<t<y,
—b

where L is the local time of B and f is given by Proposition 2.1. Set

r=inf{t > ~b:Us ¢ [b,1/8] or B ¢ [~1/b.1/0]},
Vt:vat/\T’ t> —b.

We take here inf ) = b. It follows from the choice of 7 that the r.v.
/ (2 — B2 d(M), :/ (2 — B4V, ds
b b

is bounded. Let us consider the measure Q defined by
dQ T 1 /7
— = exp / (2—55)dMs——/ (2 — By)*d(M), ¢.
dP b 2/,

Applying Girsanov’s theorem (and keeping Proposition 2.1 in mind), we can write

tAT t
Vt:70+/ 2ds+2/ N
0 0

where (W;);>_p is a (G, Q)-local martingale with (W), = b+tA7 (the filtration (G,) is
given by Proposition 2.1). There exist an enlargement (€2, (G;), Q') of (£, (G;), Q) and
a (G, Q")-local martingale (W;);> ; such that (W), =b+t and W, =W, for t < .
Without the loss of generality, we may assume that Q' = Q, G, = G;, Q' = Q. The
general theory of stochastic differential equations (see [18; Ch. IX, (3.5)]) guarantees

that there exists a unique solution (V})i>_ of the equation

t t
V;:VU+/ 2ds+2/ V| Vs| dWV. (3.8)
0 0

Moreover, V' is positive. Set o = 7 Ainf{t > —b: V; ¢ [b,1/b]}. For any ¢t > —b, we

have
. tAo —\ 2 1 t .
E(Vins ~ Vi) =4 [ E(YVim (V) s < [ Vg = Von)ts.
0 0

Applying Gronwall’s lemma, we deduce that V; = V, for t < o. This leads to the
equality 0 = 7. As a result, V; =V, for t < 7. Thus, on the set {7 = b} we have:
Vt S [—b, b], ‘/t = Vt = Ut.



The existence of limit (1.2) in probability is equivalent to the following condition:
for any sequence (a,,by,) such that 0 < a, < b, and b, — 0, one has

/ fa(t Utdt—>0 (3.9)

where f,(t) = f(t) I(a, <|t| <b,), Uy = LL. (We keep formula (2.1) in mind).
Fix a sequence (a,,b,) with 0 < a, < b, and b, — 0. Let Q", V" and 7" denote
the corresponding objects Q, V' and 7 constructed for b, instead of b. Set

P(A) = P(A|U_y, >by),  Q*(A) =Q*(A|U_y, > by).

It follows from Proposition 2.2 that, for almost every w in the set {Uy = 0}, one has:
Je =e(w) > 0:Uy(w) =0 on (—¢,¢). Thus,

1 ~
/fn YU dt ——0 Fult) Uydt = 0. (3.10)
n—00 _1 n—00

(The notation &, P, ¢ means that P™{|& — & > 0} — 0 for any 6 > 0). Proposi-
tion 2.3, together with the continuity of [ at zero, guarantees that

P = by} —— 1,

n—oQ

and therefore, B
P"{Vt € [=by, bn], V" Ut} — 1.

n—oo

Moreover, P” ~ Q" and dé”/dﬁ" LA Thus,

1 ~ 1 ~
/ Falt Utdt—>0 — fn()v;"dt”—m = [ fu®)Vrdt =0,
_ —1

n—o0 n—oo

(3.11)
Now, let R" = LaW(V;"; b, <t <b, ‘ Q"). The general theory of stochastic
differential equations (see [14; (18.10)]), together with (3.8), guarantees that

R"— / R i (dy),
bn
where R? is the distribution of a BESQ?(y) on [~by,b,] and

fi" = Law (V7 ‘ 6”) = Law (V" ‘ 5”) = Law (b, V U_y, ‘ 5”)

(3.12)
= Law (b, V (St — |bn + Bo|) | ST > by + [by + Bol).

(We use here Proposition 2.3).
Let Y be a BESQ?(0) on [—1,1] and R"® = Law(Y;; —b, <t < b,). Then

R":/ R 1" (dy),
0

where R} is the same as above and p" = Law(Y_;,). We have p" = Law(|[Wi_,||*),
where (W});>0 is a two-dimensional Brownian motion started at zero (see the Remark
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before Proposition 2.4). This, combined with the explicit form of " given by (3.12),
shows that
() 50 = p'(A,) 50

for any sequence (A,) of Borel sets. Consequently,
R*(D,) =0 <= R*(D,)—0

for any sequence (D,,) of Borel sets. Combining this with (3.10), (3.11), we deduce
that (3.9) is equivalent to the condition

n—oo

/ fa(t) Kdt—>0

Thus, limit (1.2) exists in probability if and only if limit (3.7) exists in probability.
The second part of the Lemma (that deals with the existence of (1.2) and (3.7)
almost surely) is proved in a similar way. O

Lemma 3.5. Let (Y;)ic[-1,1) be a BESQ?(0) on [—1,1] and (Wy)ie[-1,1] be a Brow-
nian motion on [—1,1] with Wy =0 (i.e. (W)sepoa and (W_t)iepo,) are independent
Brownian motions started at zero). Then limit (3. 7) exists in probability (resp: almost
surely) if and only if the limits

lim / FO I > ¢) dt (3.13)

€l0

16%1/1 FOW (] > &) dt. (3.14)
1

16%1/1]6@) W2 I(|t| > ¢)dt (3.15)

exist in probability (resp: almost surely).

Proof. Suppose that limit (3.7) exists in probability. Take a sequence (a,,b,)
such that 0 < a, < b, and b, — 0. Set f,(¢t) = f(t)I(a, < |t| < b,), P =
Law(Y;; —1 <t <1) and let (X;);c[-1,1] denote the coordinate process on C'([—1,1]),
ie. X;:C([-1,1]) 3 x — z(t). We have

/fn ) X, dt —— 0. (3.16)

n—o0

Let P, (a > 0) be a version of the regular conditional distribution of P with respect
to the o-field o(Xj), i.e. for any Borel sets A C C([—1,1]) and D C [0, 00),

P(AN {X, € D}) = /DPQ(A) u(da),

where p = Law(X,|P). The following properties hold for p-almost every a:

(A) Law(X;; —1 <t < 0|P,) is the distribution of the two-dimensional Squared Bessel
Bridge from 0 to a over [—1,0];

(B) Law(X,;; 0 <t < 1|P,) is the distribution of a BESQ?(a) on [0,1];

10



(C) the processes (X;)ic[-1,0 and (X;)sep,1] are P,-independent. (Properties (B), (C)
follow from the Markov property of V).

In view of (3.16), there exist a > 0 and a subsequence (nj) such that conditions
(A)—(C) are satisfied and

1
/1 Fur(8) X, dt ;:—OJ 0. (3.17)

Let (V)01 (Y)iep.a be two independent BESQ?(a) on [0,1]; let (Y,')sefo,
(Y)iepo,1] be two independent BESQ?(a) on [0,1]. Set
o _ YL, if te[-1,0], Go_ f_lt if ¢te[—1,0],
Pl y? if telo,1], ! Y2 if te0,1],
Qq =Law(Z}; —1 <t <1), Q, = Law(gf; -1<t<1).
In view of Propositions 2.4, 2.6 and 2.7, the restrictions of P,, Q, and Qa to the
o-field o(X;; —1/2 < t < 1) are equivalent (we recall that conditions (A)-(C) are

satisfied for the chosen a). Therefore, (3.17) implies that
1 _

/ Fur @) Xtdt—>(] fnk(t)Xtdt%O. (3.18)
—00

The measure Qa coincides with the distribution of the process
= (Va+ W)+ (W) + (W), (3.19)

where (W/)iei—1,1) (¢ = 1,2,3) are three independent Brownian motions on [—1,1]
with W& = 0 (see the Remark before Proposition 2.4). Similarly, Q, coincides with
the distribution of the process

Ve = (Va+W)* + (W7)?,

where (W})e—1,1] (i =1,2) are the same as in (3.19). Thus, (3.18) is equivalent to:

/ Fur () [(Va + W + (W2 + (W3] dt 0,

k—oo

k—00

/1 for () [(Va+ W24+ (W7)?] dt —> 0.

These conditions are, in turn, equivalent to the following ones:

/1 Fan (1) (@ + 2@ W) dt —— 0, (3.20)
/ 1 o (8) (W)? dt ﬁ 0. (3.21)

The integrals in (3.20) are Gaussian r.v. (see [15; Ch. 7, §5]). For the Gaussian r.v.,
the convergence in probability implies the L?-convergence. Thus, (3.20) is equivalent
to:

o (t) dt — 0, (3.22)
1
Fu () Wy dt ﬁ 0. (3.23)



So, we have proved that, from any sequence (ay,,b,) such that 0 < a, < b, and
b, — 0, one can extract a subsequence (ng) for which conditions (3.22), (3.23) and
(3.21) are satisfied. This means that limits (3.13)-(3.15) exist in probability.

The reverse implication as well as the statement concerning the existence of the
limits almost surely are proved in a similar way. a

Lemma 3.6. Limit (3.14) exists in probability (resp: almost surely) if and only if
the limats

hm/ f(t) Wydt, (3.24)
leigl/_l f(t) Wy dt (3.25)

exist in probability (resp: almost surely).

Proof. We should prove the ”only if” assertion. Suppose that limit (3.14) exists in
probability. Set

W, — W, %fte[o,l],
—W, if te[-1,0].

The distributions of (Wt)te[—l,l} and (W})se[-1,1] coincide, and therefore, there exists a
limit in probability

hm/ FO W] > <) dt

Furthermore,

1 1 L 1
/ FOW (] > o) dt+/ FOW (] > ) dt:2/ F(O) W, dt.
—1 —1 €
This completes the proof. O

Lemma 3.7. Limit (3.24) exists in probability (resp: almost surely) if and only if
condition (ii) of Theorem 8.1 (resp: condition (ii) of Theorem 3.2) is satisfied.

Proof. Suppose that limit (3.24) exists in probability. As the integrals in (3.24)
are Gaussian 1.v. (see [15; Ch. 7, §5]), this limit also exists in L?. Therefore, the
expression

E(/:f(t)Wtdt //s/\tf dsdt—Q/ltf(t)ﬂ(t)dt
:—/6 td—(FQ())dt—sFQ() /ElFi(t)dt

converges to a limit as ¢ — 0. Consequently,

/1 F2(t)dt < oo (3.26)

0

and there exists lim, o eF7(¢). Condition (3.26) implies that this limit is equal to zero.
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Now, suppose that condition (ii) of Theorem 3.1 is satisfied. For any sequence
(@p, by) such that 0 < a, < b, and b, — 0, we have

e ") Wtdt)2: (Fy (an) — Fy (bn))2an + / N(Fu(z) = Fy(b))de.  (3.27)

a an

Condition (3.3) guarantees that the right-hand side of (3.27) tends to zero as n — oo.
Since the sequence (ay,,b,) was chosen arbitrarily, this means that limit (3.24) exists
in probability.

Suppose that limit (3.24) exists almost surely. Then this limit also exists in prob-
ability, and, by the above reasoning, condition (3.3) is satisfied. By It¢’s formula,

/ R Widi = — / WL dEL (1) = W.F, (0) + / Fdaw. (3.28)

Set W, = Wi_,— Wi, F,(t) = F(1—t). The process (Wt)te[o,l} is a Brownian motion,
and we have

/E CFL() W, = — /0 B (i,

As fol F2(1) dt < oo, we get

1—¢ . 1 .
/ Fo(t)dW, 2> [ F () dW,.
0 10 Jo
This, combined with (3.28), shows that there exists almost surely lim, o W.F, (¢). By
Blumenthal’s zero-one law, this limit is equal to a constant. The symmetry property

of a Brownian motion guarantees that this limit equals zero. According to a result
of T. Jeulin and M. Yor (see [13; Proposition 15]), the condition W_F,(¢) %) 0 is
&

equivalent to (3.5).
The last implication (stating that condition (ii) of Theorem 3.2 guarantees the
existence of limit (1.2) almost surely) is proved in a similar way. O

Lemma 3.8. If conditions (ii) and (iii) of Theorem 3.1 (resp: conditions (ii) and
(iii) of Theorem 3.2) are satisfied, then limit (3.15) exists in probability (resp: almost
surely).

Proof. Suppose that conditions (ii) and (iii) of Theorem 3.1 are satisfied. By Itd’s
formula, we have

1 1 1 1
/ FE)W2dt = — / W2, (t) = W2F, () + 2 / Fo () W, dW, + / Fo(t) dt.
) ) ) T (329
In view of the inequality fol |F(t)] dt < oo, we deduce that the last term in (3.29)
converges to a limit as € — 0. .
Set Wy, = Wi, F(t) = F,(1 —t). The process (W;)c[o,1] is a semimartingale
with the decomposition

t
—~ — Ws
Wt:WO_/l dS"’Ut,
0

— S
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where U is a Brownian motion (see [18; Ch. IV, (3.18)]). We have

1—¢ ﬁv 1172 1—e _ _
fLZtht - / F. () W, dU,.
- 0

(3.30)

1 1—¢ - o
/ P () W, dW, = — / B\ (1) W, div, = /
£ 0 0

In view of the properties

1
/
0

E/I(E(t) W) dt < /1 F2(t) dt < oo,

Fy () W7

1
it = / B ()] dt < oo,
1—¢ ;

we deduce that the expression in (3.30) converges almost surely as € — 0.
Furthermore,
E[W2F, (¢)| = e[ Fy (¢)) Ay

and hence, the expression in (3.29) converges in probability as ¢ — 0. Applying the
same reasoning to the integral [~ f(t) W2 dt, we deduce that limit (3.15) exists in
probability.

Suppose now that conditions (ii) and (iii) of Theorem 3.2 are satisfied. Condi-
tion (3.5) means that W_.F,(¢) % 0 that leads to W2F,(¢) %) 0. Thus, limit (3.29)

exists almost surely. Applying the same reasoning to [~ f(¢) W2 dt, we get the exis-
tence of (3.15) almost surely. O

3. Comparison of Theorems 3.1 and 3.2. If limit (1.2) exists almost surely,
then it exists in probability. The following example shows that the reverse is not true.

Example 3.9. We take a sequence 1 =b; > a; > by > ay... with b, >0, b, — 0
that satisfies some additional properties to be specified below. Set F(t) = (¢1n®1/t)~1/2
if ¢ does not belong to any of the intervals (ay,b,), and set F(t) = (tlnln1/t)~'/? if
t is the middle of an interval (ay,b,). We extend F' to the remaining points in (0, 1)
by linearity. Obviously, e F?(e) 5) 0. We can take points b, sufficiently close to each

other so that condition (3.5) is violated. We can take each a, sufficiently close to b,
so that fol F2(t)dt < oc.
Set
0 if t¢(—1,1),
f(t) =< F'(t) if ¢t € (0,1),
—F'(—t) if t € (—1,0).
Then f satisfies the conditions of Theorem 3.1 while it does not satisfy conditions (3.5),

(3.6) of Theorem 3.2. In other words, for this function f, limit (1.2) exists in probability
but does not exist almost surely. O

The function f constructed in the above example is highly oscillating. The theo-
rem below shows that, for rather regular functions f, the existence of limit (1.2) in
probability implies its existence almost surely.
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Theorem 3.10. Suppose that limit (1.2) exists in probability. Moreover, let us as-
sume that the function |xFy(x)| increases on (0,0) and the function |xF (z)| decreases
on (—0,0) for some 6 > 0 (the functions Fy and F_ are defined in Theorem 3.1).
Then limit (1.2) exists almost surely.

Proof. By Theorem 3.1, condition (3.3) is satisfied. Fix o > 0. As eF?(e) ? 0,

we have

1 —ax F3(x) { —a } )
—exp = exp < Fi(x
R o) et bl R

for sufficiently small z. Keeping (3.3) in mind, we deduce that (3.5) is satisfied.
Applying the same reasoning to F_, we get the result. a

4 An Extension of Ité’s Formula

1. It6’s formula and its known extensions. Recall that (B;);>¢ denotes a Brow-
nian motion started at By € R.
[t0’s formula states that if ¢ € C*(R), then

S(B,) = o(By) +/01t (B, dB, +%/01t (B, ds. (4.1)

The It6-Tanaka-Meyer formula (see, for example, [18; Ch. VI, (1.5)]) states that if

¢ is a function of bounded variation, then

o(B) = o(m) + [ myam+ [ i), (12)

where L is the local time of B and ¢” is defined as a signed measure on R (it is finite

on compact intervals).
N. Bouleau and M. Yor proved in [2] that if ¢’ is locally bounded, then

o) =)+ [ G man - [ d@ T

where [, ¢'(x)d, L} is the integral with respect to the local time (its precise definition
is given in [2]).

H. Féllmer, Ph. Protter and A.N. Shiryaev gave in [5] the following extension of
Ito’s formula. Suppose that ¢' € L2 .(R), i.e.

loc

M
VM >0, / (¢'(2))%dx < <.
M

Then, for any ¢ > 0 and any sequence (¢}), n = 1,2... of finite partitions of [0, ]
with sup,(tp,, —t}) —— 0, there exists a limit in probability
n—r00

[¢'(B), Bl = lim > (¢'(By,,) = ¢'(By) (By,, - By)

15



called the quadratic covariation of ¢'(B) and B. Furthermore,

Le(B). Bl (4.9

¢(B;) = ¢(Bq) + /Ot ¢'(Bs) dB, + 5

2. An extension based on the principal values. We present in this paper the
following extension of It6’s formula.

Theorem 4.1. Let ¢ be an absolutely continuous on R function such that ¢’ is
absolutely continuous on R\ {0}. Suppose that
(i) there exists a limit oo = lim, o(¢'(¢) — ¢'(—¢));

(11) QO € LZOC(R)‘
(i) (¢ (a)? = 0.

Then

t 1 1 t
©(B;) = ¢(Bo) + /0 ¢'(By) dB; + §aL? + §V.p./0 ¢"(By) ds, (4.5)

where L is the local time of B.

Remark. Obviously, the assumptions of Theorem 4.1 can be reformulated as follows:
¢ is absolutely continuous on R, ¢’ is absolutely continuous on R\ {0} and limit (1.2)
exists in probability for f = ¢”. O

Proof of Theorem 4.1. Take n € N and set

= ¢"(@) I(|z] > 1/n),

¢'(x) if |x| > 1/n,
O'(1/n) it 0<z<1/n,
O'(=1/n) if —1/n<z<0,

on(z) = y) dy,
0

a, = F,(1/n) — F,(=1/n).

Applying formula (4.2) (and keeping Proposition 2.1 in mind), we get

on(By) = ¢n(By) + /0 F,(B,) dB, + %anL? +% /0 fu(B,) ds. (4.6)

Condition (ii) guarantees that, for any M > 0,

/_ (Fu(z) — & (2))2 dz ——> 0. (A7)

M n—oo

Consequently, for any M > 0,

M

E/Ot(Fn(Bs) — '(B,)*I(|B,| < M) d8<:/

-M

(Fo(z) — ¢'(2))? EL} dx) —— 0.

n—oo
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(We use Proposition 2.3 to estimate EL}). This leads to

t t
/ F,(B,)dB, —— [ ¢'(B)dB,.
0 n—oQ 0
Property (4.7) implies that the sequence (¢,) converges uniformly to . Condi-
tion (i) means that «,, — «. Finally, Theorem 3.1 shows that

¢ ¢
/ fn(Bs)ds LN v.p./ ¢"(Bs) ds.

Passing to the limit in (4.6), we get (4.5). O

Remark. Suppose that ¢ satisfies the conditions of Theorem 4.1. Set ¢ (z) =
o(x)+ Bx™, where § € R, ¥ =2V 0. Then 1) satisfies the conditions of Theorem 4.1,
and

V(@) =¢' (@) + BI(x>0),  '(x) =¢"(2).
Combining formula (4.5) with the equality

t
1
BB} = BB + / BI(B, > 0)dB, + 3 BL;
0
(this equality is a particular case of (4.2)), we get

B(By) = ¥(By) + /w VB, + g(a+ H)LY + vp/w"

This shows that the term involving LY in (4.5) is essential. On the other hand, one can
get rid of this term by adding a function of the form Sz™ to the original function ¢. O

3. Comparison of different extensions. The It6-Tanaka-Meyer formula (4.2)
is more general than It6’s formula (4.1) in the sense that the class of functions to
which it can be applied is greater than the class of functions to which [t6’s formula
can be applied. The Bouleau-Yor formula (4.3) is, in turn, more general than the It6-
Tanaka-Meyer formula (4.2) while the Follmer-Protter-Shiryaev formula (4.4) is the
most general one.

The place of (4.5) in this hierarchy is between It6’s formula and the formula of
Follmer-Protter-Shiryaev. The generality of (4.5) cannot be compared with the gen-
erality of formulas (4.2) and (4.3). Figure 2 illustrates the relation between different
extensions of It6’s formula.

Formula (4.5) is useful in the case where a function ¢ ”behaves well everywhere
except for one point”. It is illustrated by the following examples.

Example 4.2. Suppose that ¢ € C'(R)NC?(R\{0}). Such functions often arise in
connection with the smooth fit condition in the theory of the optimal stopping (see [19],
[20; Ch. VIII, 2, §2a]). Obviously, formula (4.5) is applicable to such functions ¢ (note
that o = 0 in this case).

On the other hand, 1t6’s formula and the Ito-Tanaka-Meyer formula may not be
applicable to ¢. Indeed, suppose that ¢’ has unbounded variation in any neighborhood
of zero. Then ¢" ¢ Lloc( R), and the integrals

t
/gp"(Bs)ds, /(p”([ﬁ) LY dx
0 R

are not defined (this is easily seen from equality (2.1) and Proposition 2.2). O
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It6’s formula

¢ € C*(R)

It6-Tanaka-
Meyer formula

¢’ has boun-
ded variation

1
5 | Lretaa)
R

|

Bouleau-Yor
formula

/

¢’ is locally
bounded

1
—§/<p'($) d. L}
R

\\\\\\\\\

formula based on
the principal values

t
3 v.p./ ¢©"(Bs) ds
0

1 0 1 ! "
§OéLt + §Vp 2 (BS) dS
0

Follmer-Protter-
Shiryaev formula

¢ € L;,(R)

loc

SI/(B), Bl

Figure 2. The relation between different extensions of It6’s formula

Each extension of It6’s formula is represented by a box. The arrows indicate
the scope of generality of different extensions. The centre line in each box
shows the class of functions to which the corresponding extension can be
applied. The lower line in each box shows the form of the covariation term
for the corresponding extension.
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Example 4.3. Take ¢(z) = |z|["sgnz with 1/2 < v < 1. Then formula (4.5)
is applicable to ¢ while neither the Ito-Tanaka-Meyer formula nor the Bouleau-Yor
formula can be applied to ¢. O

The comparison of different extensions of It6’s formula allows us to give several
representations of the principal value.

Corollary 4.4. Suppose that f satisfies the conditions of Theorem 3.1. Then there
exists a primitive F' of the function f (defined separately on (0,00) and on (—o0,0))
such that

lim(F (=) ~ F(~2)) = . (4.8)
For this F', we have t
VpAﬂ&Mﬁﬂﬂmﬂh (4.9)

Proof. The existence of a primitive F' satisfying (4.8) follows from condition (i) of
Theorem 3.1. Let ¢ be a primitive of F'. Combining formulas (4.4) and (4.5), we get
the desired result. O

Corollary 4.5. Suppose that [ satisfies the conditions of Theorem 3.1. Let F be
a primitive of the function f that satisfies condition (4.8). Suppose that F is locally
bounded. Then

vaVwmm:iéﬂ@@m.

Proof. This statement follows from equalities (4.3) and (4.5) taken together. O

5 Properties of the Principal Values

Throughout this section, we assume that f satisfies the conditions of Theorem 3.1, i.e.
for each ¢ > 0, there exists

t
vp/ﬂ&ﬂ& (5.1)
0
We will study here the properties of this process ”in ¢”.

1. Continuity. There exists an absolutely continuous on R function ¢ such that
¢ is absolutely continuous on R\ {0} and ¢” = f. Applying Theorem 4.1, we get the
following statement.

Theorem 5.1. Process (5.1) has a continuous version.

2. Energy. If the function f is not locally integrable, then process (5.1) does not
have finite variation. However, in any case it is a process of zero energy.

Definition 5.2. A process (Z;);>0 has zero energy if for any ¢ > 0 and any se-
quence (t}), n=1,2... of finite partitions of [0,¢] with sup,(t},; —t}) —— 0, one
n—oo

has -
S (2, 25)* 0

n—00
k
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Theorem 5.3. Process (5.1) has zero energy.

Proof. Tt is shown in [5; (3.45)] that, for F € L? (R), the quadratic covariation

loc

[F(B), B] is a process of zero energy. Taking (4.9) into account, we get the result. O

3. Additivity. Let P, denote the distribution of a Brownian motion started at
r € R. Let (X;);>0 be the coordinate process on C(R;) and (F;);>o be the canonical
filtration on C(Ry), i.e. F; = 0(X,; s <t). Finally, (6;);>0 denotes a family of shifts
defined by

0, C(R}) 3 (a(s))iz0 — (a(t +5))iz0 € O(R,).

Definition 5.4. A continuous additive functional of a Brownian motion is a con-
tinuous (F;)-adapted process (Z;)i>o on C(Ry) such that

Zt—l—s = Zs + Zt 9 05 Pm—a.s.
for any t,s > 0, x € R.

Theorem 5.5. There exists a continuous additive functional Z of a Brownian mo-
tion such that

t
7, = v.p./ f(X5)ds Pg-as.
0
forany t >0, x € R. Moreover, Z has zero energy with respect to each P,.

Proof. Let F' be a primitive of the function f that satisfies condition (4.8). Let ¢
be a primitive of F'. According to Theorem 4.1, we have

V.p./olt f(Xs)ds = 2p(X;) — 2¢p(Xp) — 2 /OtF(XS) dX, Pg-as. (5.2)

for any ¢ > 0 and = € R. It follows directly from the definition that the right-hand
side of (5.2) is an additive functional of a Brownian motion. The second part of the
statement follows from Theorem 5.3. a

Remark. Y. Oshima and T. Yamada proved in [16] that any continuous zero-energy
additive functional of a Brownian motion can be represented as

o050 (X0~ [ LX) X,

where ¢ is an absolutely continuous function with ¢’ € L2, (R). O

4. Convergence to the principal value. If f satisfies the conditions of Theo-
rem 3.1, then, for any T > 0,

T P T
/0 f(Bs) I(|Bs| > ¢) ds e V.p./o f(B,)ds.

We will now prove that the convergence also holds in a stronger sense.
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Definition 5.6. A sequence (Z}');>¢ of random processes converges to a process
(Z1)i>0 in probability uniformly on compact intervals if for each t > 0,

sup | Zy — Z| L)
s<t n—oo

This will be denoted as Z! =2 Z,.

Theorem 5.7. Suppose that f satisfies the conditions of Theorem 3.1. Then

/0 F(B) 1B, > <) ds 225 V.p./ﬂ £(B,) ds.

Proof. Let ¢ be a function such that ¢" = f. Tt follows from the proof of
Theorem 4.1 that each term in (4.6) (except for fot fn(Bs) ds) converges in probability
uniformly on compact intervals to the corresponding term in (4.5). So, the convergence
also holds for the term fot fn(Bs) ds. This yields the desired result. O
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