VECTOR STOCHASTIC INTEGRALS
IN THE FUNDAMENTAL THEOREM
OF ASSET PRICING

A.S. Cherny

Moscow State University,
Faculty of Mechanics and Mathematics,
Department of Probability Theory,
119992 Moscow, Russia.
E-mail: cherny@mech.math.msu.su

1 Introduction

The Fundamental Theorem of Asset Pricing asserts that for a d-dimensional semi-
martingale X, the absence of specifically defined arbitrage opportunities implies the
existence of an equivalent measure such that X is a martingale transform with respect
to this measure. Here, the definition of arbitrage employs vector stochastic integrals
H e X where H belongs to the set of X-integrable predictable processes. The question
arises whether one may deal here with componentwise integrals or only with locally
bounded integrands. It turns out that the answer to this question depends on the
definition of the absence of arbitrage. That is, the condition (N A) for locally bounded
integrands implies the existence of an equivalent measure for which X is a martingale
transform. It is proved in section 3 of this paper. On the other hand, in section 4
we present an example of a two-dimensional semimartingale satisfying the condition
(NA) for componentwise integrals and possessing no equivalent measure such that X
is a martingale transform with respect to this measure. This example illustrates the
importance of vector stochastic integrals in the mathematical finance.

2 Preliminaries

Let X = (X/},...,X{")>0 be a semimartingale on a filtered probability space
(Q:f: (ft)tZO:P)'

Definition 2.1 An F;-predictable process H = (H},..., H?) is X-integrable if
there exists a decomposition X = A + M into a sum of a finite-variation process and
a local martingale such that
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where F;-adapted processes ai,ﬁz and an increasing process C; satisfy the following

conditions:
t
Ai:/agdcs (i=1,...,d),
0
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[Mi,Mj]t:/ dC, (i,j=1,...,d).
0

The set of all X-integrable predictable processes is denoted by L(X) whereas (H o
X); designates the vector stochastic integral fot H,dX,. For the definition of a vector
stochastic integral, we refer to [7] and [11].

Remarks. 1) A vector stochastic integral is a one-dimensional semimartingale
defined up to indistinguishability.

2) In the mathematical finance, the process X is interpreted as a discounted price
process of d assets on the securities market. The process H describes the self-financing
portfolio with the capital process H e X.

A process H = (H}, ..., HY) is said to be componentwise X-integrable if H' €
L(X?") for i =1,...,d. For instance, any locally bounded predictable process satisfies
this condition. It is well known that for any componentwise X-integrable process H,

we have H € L(X) and
d

HeX=) HeX
i=1
where H' e X* are one-dimensional stochastic integrals. The following example shows
that the converse is false.

Example 2.2 Let Y; be a one-dimensional local martingale and K; be a predictable
process such that K ¢ L(Y). If we set X; = (YV3,Y;), H, = (K, —K;), A, = 0 and
M, = X, then H satisfies the integrability assumption from Definition 2.1 since
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due to the equality 7' = n/* = 7' = 7%, Thus, H € L(X) and H ¢ X = 0 while
H' ¢ L(X") for i=1,2. O

Let us now recall two important theorems on vector stochastic integration.

Theorem 2.3 (i) If X is a d-dimensional semimartingale and H; € L(X) (i =
1,2), then aH;, + fHy € L(X) and

(aH) + fHy) @ X = a(H, e X) + (Hye X).

(1) If Xy, X5 are d-dimensional semimartingales and H € L(X;) (i = 1,2), then
H e L(aX1 + /BXQ) and

He (aX;+ X)) =a(He X))+ ((H e Xs).
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Theorem 2.4 Let X be a d-dimensional semimartingale and suppose that H €
L(X). Then, for any one-dimensional process K, we have: K € L(He X) < (KH) €
L(X), in which case K o (He X)=(KH)e X.

We now turn to various definitions for the absence of arbitrage.

Definition 2.5 1) An integrand H = (H},..., H?) realizes (A)y (Arbitrage) on
X where V' stands for ”vector”, if

(i) H e L(X);

(i1) there exists a > 0 such that H ¢ X > —a as., ie., P((HeX), > —a) =1 for
each ¢ > 0; due to right-continuity of H e X, it is equivalent to the condition:
P(HeX),>—a Vt>0)=1;

(73i) almost surely there exists the limit (H e X)), = tlim (H e X)y;
—00

(iv) (HeX)o >0 as. and P((HeX)s >0) > 0.

2) An integrand H realizes (A)c on X where C stands for ”componentwise”, if
the condition (7) is replaced by:

(i) H' e L(X") fori=1,...,d.

3) An integrand H realizes (A)p on X where B stands for "bounded”, if H is
locally bounded and all the conditions stated above are fulfilled.
4) By No Arbitrage properties (NA)y,(NA)c and (NA)p, we mean the absence

of corresponding integrands for X .

Definition 2.6 1) A sequence of integrands H,, = ((H})y, ..., (HZ)¢) realizes (4)y
on X if

(1) H, € L(X) for n € IN;
(17) for each n € IN, there exists a, > 0 such that H, e X > —a, a.s;
(#74) almost surely there exists the limit (H, @ X ), = tlim (H, e X), for each n € IN;
—00
(iv) (H,®X)sx > —1/n as. and there exist d; > 0,8, > 0 such that P((H, X) >
61) > 9 for each n € IN.

2) A sequence of integrands H,, realizes (4)c on X if the condition (7) is replaced
by:
(1)) H. € L(X") fori=1,...,d,n € IN.
3) A sequence of integrands H,, realizes (A)p on X if H, is locally bounded for

n € IN and all the conditions stated above are fulfilled.
4) By the properties (NA)y,(NA)c and (NA)p, we mean the absence of corre-

sponding integrands for X .

Definition 2.7 The properties (ﬂ)v, (],\771)0 and (W)B are defined similarly
to (NA) properties; namely, the condition (iv) should be replaced by:
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() (Hn®X)o > —b as. for some b > 0, lim P((H, ®X)x < —6) = 0 for each
n—oQ

0 > 0 and there exist §; > 0,9, > 0 such that P((Hn e X)w > 51) > §, for each
n € IN.

Remarks. 1) The following implications are obvious:

(NA)y = (NA)e = (NA)p

4 J J
(NA)y = (NA)e¢ = (NA)p
U U U

(NA)y = (NA)¢ = (NA)p

2) The notions (NA)y and (NA)y were introduced by Delbaen and Schachermayer
in [2] and designated by No Free Lunch with Vanising Risk (NFLV R) and No Free
Lunch with Bounded Risk (NFLBR). We shall now cite the definitions of these notions
from [2].

Let Ky be a subset of L° = L%(Q, F, P), defined as

Ky={(HeX)x | He€ L(X), Ja: HeX > —a a.s. and (HeX), = tlim (HeX); as.}.
— 00
Set
Co=Ky— L), C=CynL>.

By C and C , we denote the norm closure and Wgak* sequential closure in L*>°. The
properties (NFLV R) and (NFLBR) mean that C N LY = {0} and C N LY = {0}.
These are equivalent to (NA)y and (NA)y, respectively.

The following notion was introduced in [5] under the name ”semimartingales de la

classe (>,)7.

Definition 2.8 A d-dimensional semimartingale X is called a martingale transform
if there exist a d-dimensional local martingale M and a componentwise M-integrable
process H such that X' = H'e M’ for i =1,...,d.

Remarks. 1) For a semimartingale X, there is equivalence between:

(a) X is a martingale transform.

(b) There exist M € H' and a positive process ¢; such that ¢ € L(M*) and X* =
pe M (i=1,...,d).

2) In the discrete-time case, the class of martingale transforms coincides with the
class of local martingales (see [9]). On the contrary, in the continuous-time case, the
situation is different. Emery (see [5]) presented an example of a martingale transform
which is not a local martingale. However, from the theorem proved by Ansel and
Stricker (see [1]), it follows that any locally bounded martingale transform is a local
martingale.

Now, we formulate the Fundamental Theorem of Asset Pricing (for the proof, see

3])-

Theorem 2.9 There is equivalence between:
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(a) X satisfies (NA)y .
(b) X satisfies (NA)y.

(¢) There exists a probability measure () ~ P such that X is a martingale transform
with respect to Q).

Finally, we recall that for one-dimensional semimartingales X and Y, the Eme’ry
distance between them equals

o

D(X,Y) = sup ( 2‘"E[min{|(H°X)nl;1}]>

[H|<1 %2

where sup is taken over the set of all predictable processes H bounded by 1 (this metric
was introduced by Emery in [4]). The corresponding topology is called a semimartingale
or E’me’ry topology. Convergence in this topology is stronger than uniform convergence
on compact time intervals in probability.

3 Positive Results

In this section, we prove that any of the conditions (NA)gz, (NA)c implies the exis-
tence of an equivalent measure for which X is a martingale transform.

Proposition 3.1 Together with (NA)y, the condition (NA)p implies (NA)y .
Proof. Suppose that X satisfies (NA)z and (NA)y but does not satisfy (NA)y .

Let H, be a sequence of integrands realizing (A)y on X. We first prove that

1
(3.2) H,eX >—— as., nelN.
n

If this condition is violated, then for some ng € N and ¢y > 0, we have
1
P((Hno o X), < ——) > 0.
L)
By letting
1
A={(Hyy o X)iy < ——1}.
n

0

K = Hy, - [(A x (ty,0)),

we obtain an integrand realizing (A)y on X.
For

we have that H,,, ¢ X converge to H, ¢ X in the Emery topology as m — oo (see
[10]) and therefore

P(sup |(HymeX),— (H,®X),|>0) — 0, m— o0
te[0,7T



for T > 0,6 > 0,n € IN. The definition of (A)y gives constants d; > 0,d, > 0 and a
sequence T,, such that

(3.3) P((Hn o X)p, > 51) > 8, nelN.
For each n € IN, we can find m(n) satisfying the condition:

1 1
(3.4) P( sp |(Humy @ X)i = (Ho 0 X) 2 =) < =

te[0, 1]
If we set
K = Hpymy - 1([0, T)),
—inf{t > 0: (K% X), < (Hy 0 X); - %},
Tn =Ty AT,
then the properties of stochastic integrals imply
ARG @ X)r | = |(Ko)r | - |AXG, | <
< |(Hn)r | - |AX, | = \A ne X))l
sign(A(K) @ X),,) = sign(A(H, ® X).,).

By treating A(H, e X), >0 and A(H, e X), <0 separately and considering (3.2),
we obtain

3
(Kg oX) > —— as.
Tn n
Thus, for K, = K? - I([0,7,]) where [0, 7,] denotes the stochastic interval, we get
K,eX > —§ a.s.
n

From (3.3) and (3.4), it follows that

1 1

Since integrands K, (n € IN) are bounded, they are componentwise X-integrable.

Thus, the sequence K, realizes (A)p on X that contradicts the above assumption.
O

Theorem 3.5 The condition (NA)z implies (NA)y

Proof. Suppose that X satisfies (NA)g but does not satisfy (NA)y, i.e., there
exists an integrand H that realizes (A)y on X. Set

H, = H-I(|H| <m),
=inf{t>0:(H,eX), < (HeX)—a}

where a is chosen from the inequality:

HeX > —a as.



As in the proof of the above proposition, it is easy to show that the sequence of
integrands K,, = H,, - I([0, 7,,,]) realizes (A)p on X. Thus, (NA)p implies (NA)y,
and by applying Proposition 3.1, we complete the proof. O

Corollary 3.6 There is equivalence between:
(a) X satisfies (NA)g.
(b) X satisfies (NA)c.

(¢) There exists a probability measure ) ~ P such that X is a martingale transform
with respect to Q).

4 Example

This section presents an example of a semimartingale that satisfies (IVA)c and has no
equivalent measure such that X is a martingale transform with respect to this measure.

First, we construct two auxiliary processess A; and By. Let (7;)2,, (()24, (p)$,
and (17;)2, be independent random variables such that 7;, p; are uniformly distributed
on [0,1], ¢; are Gaussian with parameters 0,1 and 7; take the values +1 with proba-
bility 1/2. Set

n
T,=Y 7, neN,
=1

Sn:zn:pza newa

i=1
A=) G t20

{n:T, <t}

Before constructing B;, we introduce the process B? such that B =0,

B — 1 if By =1lorn,=1,
Sno 7 | =245 if BY  #landn,=-1

and B is constant on intervals [S;, S;y1). Set

Sptzl_{t}:
B=¢eB’

where {t} denotes the fractional part of ¢.
Let W; be a standard linear Brownian motion being independent of the pair



(At, Bt)tz(] . Set

Fl=0(A;s<t), FiA= ﬂﬁf,

s>t

FB=0(Bys<t), FP= ﬂ]}SB,
s>t

FV=oWgs<t), FV= ﬂf}V,
s>t

Fo=F'vFvFE" F=\/F.
>0

Tt can be proved that F = F and FP = FF (see [7]).

The two-dimensional process X is given by

thzAt+Bt+Wt;
XEZ—At—FBt—Wt.

This process is F;-semimartingale since A;, B; have finite variation and W, is F;-
Brownian motion due to the independence of F;* v FP and F}V.

Proposition 4.1 The process X does not satisfy (NA)y . Consequently, X pos-
sesses no equivalent measure for which X is a martingale transform.

Proof. Set
1
H! = H} = —.
Pt
We have
t
(4.2) / |Ks| dVar(As £ Bs) < oo as. Vt>0
0

for any one-dimensional process K and, in particular, for H' and H?. Set W} = W,
W2 = —W, and let an increasing process C; and F;-adapted processes 7’ satisfy the
condition:

t
[Wia Wj]t - / W,ijdcs (Z:] — 1: 2)
0

The processes 7% may be chosen so that 7!'' = —7'2 = —72! = 722, Since H' = H?,
we get
t 2
/ (Z H;wgfﬂg)dcs = 0.
0 % j=1

Together with (4.2), this implies that H € L(X). We may write
(He X), = ((H1 + H?) o B)t =2(1/peB), = 2B}

due to the definition of a vector stochastic integral and Theorem 2.4. From the con-
struction of BY, it follows that

B > -2, lim B) =1 a.s.

t—o0
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Thus, X does not satisfy (NA)y. Consequently, X does not satisfy (NA)y. O
Now we turn to the proof that X satisfies (NA)¢.
Lemma 4.3 Suppose that H = (H}, H?) satisfies the following conditions:

H' e L(X") (i=1,2),
He X > —a a.s. for somea > 0.

Then
HeX = (H'+ H?* eB.

Proof. From (4.2), it follows that K € L(A), K € L(B) for any one-dimensional
process K. By Theorem 2.3, we obtain that H* € L(W) (i = 1,2). Hence

HeX=K'eA+K’eB+K'eW

where K! = H' — H?, K? = H' + H?.
Let P be an (infinite) measure on (Q x Ry, F ® B(IR,)), defined as P ® p(IR)

where pur(IR,) denotes the Lebesgue measure on IR, . Suppose that P(K! # 0) > 0.
Then, there exists n € IN such that

P(KY - I([T -1, T]) # 0)> 0.

According to our construction, we may write

(4.4) (Q,Q,P): (Ql X Q9,61 ® Gy, P ® PQ)
where
G=F,
gl = O-(Tla s 7Tn—17C17 . '7Cn—1) \ O-(Btat 2 0) \% O-(Wtat Z 0)7
Gy = O'(Tn,Tn_H, e Cny Gty - - )

We shall first prove that for any F;-predictable process K, the stopped process
K" =K is G ® B(IR,)-measurable. For a fixed s > 0, we introduce the set

D ={w:T,(w) > s}
From the equality F/! = .7}{‘, it follows that

fs|D: ﬁsA|D stB|D \/fsW|DC
C O'(Tl,...,Tnfl,cl,...,gnfl)|D \/O'(Bt,tZOHD \/O’(Wt,tZOHD C g1|D.

If K =1I(E x (s,00)) where E € F,, then
KT = I((Em (T, > s}) x (s, oo)).

Such processes are obviously G; ® B(IR,)-measurable. The sets E X (s,00) where
s >0, F € Fs, together with the sets F x {0} where F € F, generate the predictable
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o-field on Q x IR, (see [8]). Using the monotone class theorem, we deduce that K™ is
G1 ® B(IR)-measurable for any K being an indicator of a predictable set. The asser-
tion for any predictable K can be proved with the help of a standard approximation
procedure.

We shall now prove that P(K}. #0) > 0. Set

(2.9, ~) (@ [0,1], G & B([0,1]), P® m([0,1])),
K@) = K'(w,s) = (K" (w. Tha(w) +5), s €[0,1].

Due to G; ® B([0, 1])-measurability of K, we may write
K'Y @) = KM (wi,ws, ) = K (wy, 5).
Here, we use (4.4): w = (w1, wq) € Q; X Qy = Q. Therefore
Kz, (w) = (K7 (w) = (K™ (W, Taa (@) + 7u(w)) =
= KY(w, 7a(w)) = K (wy, 7 (w2))
since 7, is Go-measurable. Let 6 be the mapping defined as
0: Q) x Q3 (wy,ws) — (w1, Tn(wa)) € Qy x [0,1].

It is easy to verify that Py ® pup = (P, ® Py) 0 07! where py = ur([0,1]). Thus, for
any D € G, ® B([0,1]), we have

({w W, Tn(w )GD}):
= (P ® P) ({(wi,w2) 1 (w1, To(w2)) € D}) =
= (P ® pu) (D) = P(D).
Consequently
P(K}n #* 0) ({w W, Tn(w f( #* 0}})
:15(1(1 #0) > P(K"- I([Ty-1,T0]) # 0) > 0.
The random variable

(He X)r, = %%%(HQX)t

is Fr, -measurable (see [8]). As mentioned above, for any s > 0, E € F,, we have
En{T, > s} € G;. Therefore, Fr, C G;. Since r.v. (1;)2,, (pi)$2; are independent
and uniformly distributed on [0, 1], we get,

P({w: Ty(w) = Sp(w)}) =0
for any m € IN. Together with continuity of W;, this implies that
(HeX)r, =(HeX)r,_ 4+ Kj, - AAp, = (He X))y, + Ky -(,  as.
We may find constants M > 0,6 > 0 such that

P({I(H o X)r,-| < MYy N {IKL | > 3}) >0
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Due to unboundedness of (,, and independence of (,, and G;, we get
P((H e X)s, <—a)>0

that contradicts the hypothesis of the lemma. Thus, K' =0 P—a.s. and consequently,
K'eW = 0. The proof of this lemma also shows that P(K}, # 0) =0 for any n € IN,
which implies the equality K'e A = 0. Eventually

HOX:K2OB:(H1—(—H2)OB. O

Theorem 4.5 The process X satisfies (NA)o. Consequently, X satisfies (NA)g.

Proof. Suppose that X does not satisfy (NA)c. Let H; = (H},, H?) be a sequence

of integrands realizing (A)¢ on X. By Lemma 4.3 and Theorem 2.4
(4.6) HeX=KeB=K]eB

where K; = H! + H?, K} = ¢ K;. There exist constants d; > 0,0 > 0,n € IN such
that

(4.7) P((Kﬁ e B%g > 51) >5, VielN.

We may write
(Q:gap): (Ql X QQ,Q1®Q2,P1®P2)

where
gl - O-(plﬂ P25 Mn+15Mn+2, - - ) Vv U(At; t 2 0) \% O-(Wt; t 2 0)7
G = 0'(771, e ,77").
There exists a probability measure () ~ P, such that r.v. n,...,n, are independent

with respect to @ and the stopped process (B°)» is a martingale with respect to
Q=P ®Qy. We have
(K} @ B")*" = (K » (B")>"),

i.e., this process is a (one-dimensional) martingale transform. Since this process is
bounded below, it is a (-local martingale (see [1]) and by the Fatou lemma, is a Q-
supermartingale. Together with (4.7), the equivalence between ) and P implies the
existence of | € IV for which

Q((Hie X)s, < ) >0

Consequently, for some A > 0, we have P(D) > 0 where

(4.8) D:{(HloX)gn <—%—A}.

We may write
(Q,Q,P): (Ql x Q9,61 ® Go, P ®P2)
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where
gl :O-(Sla---asnanla"'ann) VU(AtatZ O)VO-(WtatZ 0)7
Go = U(Pn+1,Pn+2, <o 3 Mt 15 Mnt2,5 - - )
Set

(2.6.P) = (2 x [0.1].  © B(0.1)). P& u([0.1)).
(@) = K (w, 5) = (K05 (w, Su(w) + ), s €[0,1].

Suppose that
P({f(ﬁ < A/2Y N (D x [0, 1])) >0

where D is defined in (4.8). Using reasoning similar to the proof of Lemma 4.3, one can
show that the process (K})*»+' and consequently, (K})%" are G; ® B(IR,)-measurable.
Therefore, D € G; due to (4.6), (4.8) and G, ® B(IR.)-measurability of B’. As in the
previous proof, we deduce that

P({(Kl‘))gn+1 < A2} N D) > 0.
Since 7,41 and G; are independent, we get

P({(K{)5,0 < A/2} 0 DO {asy = +1}) > 0

which yields
p({te o <1} s = 42)) >0

As B is constant after S,; on the set {n,; = +1}, this inequality contradicts the
condition

1
Hyo X > 7 a.s.

Thus )
K)>A/2 on[Sp, S]] N(Dx Ry) P—as.

where P = P ® ur(IR,). We may find m € IN for which
P(S, <m < S,41) > 0.

Consequently, there exists 6 > 0 such that

(4.9) P((Kl)s > for p-almost all s € (m — 9, m)) > 0.

A
2(m — s)

Applying Theorem 2.3, we obtain that K; € L(W). Thus, there exists a decom-
position W = A’ + M’ into a sum of a finite-variation process and a local martingale
such that

t 1/2
( / (K2 ) € A
0

12



It is easy to verify the equality:

(M M)y =1+ (AA,).

s<t

Therefore .
/ (K))2ds < o< as. Vt>0
0

that contradicts (4.9). This completes the proof. O

Remark. Let X be an arbitrary d-dimensional semimartingale. It was already
mentioned that any of the conditions (NA)y, (NA)o, (NA)p, (NA)y implies the
existence of an equivalent measure such that X is a martingale transform with respect
to this measure. The condition (NA)y is not sufficient for the existence of such a
measure even if d = 1 (see [2]). Together with our example, this shows that none of
the conditions (NA)c, (NA)p, (NA)y, (NA)c, (NA)p implies the existence of an
equivalent measure for which X is a martingale transform.

Acknowledgement. 1 would like to thank A.N. Shiryaev for setting up the problem
and for many valuable remarks as well as helpful discussions.
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