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Abstract. We compare between two approaches to coherent risk contribution:
the directional risk contribution is defined as

ρd(X;Y ) = lim
ε↓0

ε−1[ρ(Y + εX) − ρ(Y )],

where ρ is a coherent risk measure; the linear risk contribution ρl(X;Y ) is defined
through a set of axioms, one of which is the linearity in X. The linear risk contri-
bution exists and is unique for any ρ from the class Weighted V@R. We provide the
representation for both risk contributions in the general setting as well as in some
examples, including the MINV@R risk measure defined as

MINV@RN (X) = −E{X1, . . . , XN},

where X1, . . . , XN are independent copies of X.

Key words: Conditional V@R, coherent risk measure, directional risk contribu-
tion, linear risk contribution, minimal extreme measure, MINV@R, Weighted V@R.

1 Introduction

1. Risk contribution. Let X be a random variable meaning the cash flow produced
over the unit time period by some portfolio and Y be the cash flow of another portfolio.
A basic problem of risk measurement is to determine the risk contribution of X to Y .
A number of recent investigations were devoted to this problem and to closely related
problem of capital allocation in the framework of coherent risk measures introduced by
Artzner et al. [3], [4]. Let us mention the papers by Artzner et al. [5], Cherny [7; Sect. 2.5],

1The first named author would like to thank Uwe Schmock for an interesting discussion that has
stimulated this research.
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Delbaen [12; Sect. 9], Denault [13], Fischer [16], Kalkbrenner [18], Kalkbrenner et al. [19],
Overbeck [21], Schmock [23; Sect. 3.9], and Tasche [24], [25; Sect. 4, 5]. However, different
papers use different approaches to risk contributions and the definitions from different
papers are not equivalent.

Let (Ω,F , P) be a probability space and ρ be a coherent risk measure defined as
ρ(X) = − infQ∈D EQX, where D is a set of probability measures absolutely continuous
with respect to P. One of the simplest ways of defining the risk contribution ρ(X; Y ) is
to set

ρ(X; Y ) = lim
ε↓0

ε−1[ρ(Y + εX) − ρ(Y )]. (1.1)

This approach was taken in [7] and is very close to the approach of Denault [13], Fis-
cher [16], and Tasche [24], [25], but there is an essential difference: we are considering
in (1.1) the one-sided derivative (“ε ↓ 0” means that ε → 0 and ε > 0), while these
authors consider the two-sided derivative. The two-sided derivative might not exist in
natural situations (see Remark (ii) in Subsection 2.2). In contrast, the one-sided deriva-
tive always exists due to the convexity of the function ε 7→ ρ(Y +εX). The quantity (1.1)
is reasonable economically because it approximates the increase of the risk after we pass
on from the portfolio Y to the portfolio X + Y , i.e. (1.1) can be informally interpreted as
follows: if X is small as compared to Y , then

ρ(X + Y ) ≈ ρ(Y ) + ρ(X; Y ). (1.2)

We call the risk contribution defined through (1.1) the directional risk contribution

and denote it by ρd(X; Y ). It can be shown (see Theorem 2.1) that (under some minor
technical conditions)

ρd(X; Y ) = − inf
Q∈X (Y )

EQX, (1.3)

where X (Y ) = argminQ∈D EQY is the set of elements of D, at which the minimum of
expectations EQY over D is attained (we call it the set of extreme measures for Y ).

It is often the case that X (Y ) is a singleton. For example, this is true if ρ is Conditional

V@R (CV@R)2 and Y has continuous distribution, i.e. P(X = x) = 0 for any x. Then
ρd(X; Y ) is linear in X. However, in some natural situations X (Y ) is not a singleton.
For example, this might happen if ρ is CV@R and Y has atoms (see Subsection 3.2),
which is typical for credit portfolios, where atoms of Y correspond to defaults. Then
ρd(X; Y ) is no longer linear in X. On the other hand, the linearity is a very desirable
property, especially in view of the capital allocation considerations. This is the reason
why the CV@R risk contribution defined in Kalkbrenner [18], Kalkbrenner et al. [19], and
Schmock [23] differ from (1.1); to be more precise, the two definitions differ only in the
case when Y has atoms.

In this paper we provide an axiomatic definition of what we call the linear risk contri-

bution ρl(X; Y ); see Definition 2.2. Some of our axioms coincide with those in Kalkbren-
ner [18], but our axiom system is essentially different than the one in [18]. Namely, Kalk-
brenner considers two systems: one with a certain continuity assumption and the other
is without this assumption. The first system determines the risk contribution uniquely,

2Recall that CV@R is defined as CV@Rλ(X) = − infQ∈Dλ
EQX , where Dλ = {Q : dQ/dP ≤ λ−1} and

λ ∈ (0, 1] is a fixed number. It is also known as the Average V@R, Tail V@R, and Expected Shortfall.
For X with a continuous distribution, CV@Rλ(X) = −E[X |X ≤ qλ(X)], where qλ is a λ-quantile. For
more information on this class, we refer to Acerbi and Tasche [2], Föllmer and Schied [17; Sect. 4.4],
Rockafellar and Uryasev [22], and Tasche [25].
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but it does not exist for all the pairs X, Y ; for the second axiom system, the risk contri-
bution exists in natural cases but is not unique (see Remark (ii) in Subsection 2.2). In
contrast, as stated by Theorem 2.3, for our set of axioms, the risk contribution exists and
is unique for any ρ from the class Weighted V@R (WV@R).3 This class is very wide and,
in our opinion, is sufficient for any practical application of coherent risks. As shown by
Theorem 2.3,

WV@Rl
µ(X; Y ) = −EQ∗(Y )X, (1.4)

where Q∗(Y ) is a particular measure from the set X (Y ). This measure was introduced
in [8] under the name minimal extreme measure and was characterized as the unique ele-
ment of X (Y ) whose density dQ/dP is minimal with respect to the second-order stochastic
dominance. It is given explicitly by dQ∗(Y )/dP = ϕµ(Y ), where

ϕµ(y) =

∫

(DY (y−),DY (y))

1 − λ−1DY (y−)

DY (y) − DY (y−)
µ(dλ) +

∫

[DY (y),1]

λ−1µ(dλ), y ∈ R

and DY denotes the distribution function of Y .
CV@R is a subclass of WV@R and, for CV@R, our linear risk contribution coincides

with the risk contribution considered in [18], [19], and [23] (see Corollary 3.2). However,
in those papers CV@Rl appears as some functional satisfying certain axioms (in fact,
any functional of the form ρ(X; Y ) = −EQ(Y )X with Q(Y ) ∈ X (Y ) satisfies those axioms

as well), while our axioms characterize CV@Rl completely. Another difference is that
WV@R is not considered in the above mentioned papers.

It is seen from (1.3) and (1.4) that

WV@Rd
µ(X; Y ) ≥ WV@Rl

µ(X; Y ).

For Y with a continuous distribution, the two risk contributions are equal (see Corol-
lary 2.4). However, if Y has atoms, then the above inequality might be strict (see Ex-
ample 2.5). Random variables with atoms arise naturally in credit risk models (see, for
example, [23]). Thus, the two risk contributions are in essence different.

2. Examples. CV@R is a basic example of coherent risks. Its advantage is that it is
simple. As compared to V@R, it measures not only the probability of loss but its severity
as well. However, its disadvantage is that it depends only on the tail of the distribution,
i.e. it is a 0–1 risk measure.

WV@R is a much more flexible risk measure. If supp µ = [0, 1], where “supp” de-
notes the support, then WV@Rµ depends on the whole distribution of X and penalizes
losses in a “smooth” manner rather than 0–1 manner. This is an economical advantage
of WV@R over CV@R. It has also a mathematical advantage: if supp µ = [0, 1], then
WV@Rµ(X + Y ) < WV@Rµ(X) + WV@Rµ(Y ) provided that X, Y are not comonotone4

(see [8; Th. 5.1]). This leads to the uniqueness of a solution of certain optimization prob-
lems based on WV@R. However, the weak point of WV@R is that this class is too wide
and the basic problem that arises immediately is: what measure µ to choose?

3Recall that WV@R is defined as WV@Rµ(X) =
∫

1

0
CV@Rλ(X)µ(dλ), where µ is a probability

measure on (0, 1]. It is also known as the spectral risk measure. For more information on WV@R, we
refer to Acerbi [1], Cherny [8], Dowd [14], Föllmer and Schied [17; Sect. 4.6].

4Recall that X and Y are called comonotone if there exists a random variable Z and increasing
functions f , g such that X = f(Z), Y = g(Z). For example, if X, Y have a joint density, then they are
not comonotone.

3



One way to do that might be to derive the measure µ by comparing the physical
measure (estimated from data) with the risk-neutral one (obtained from option prices); see
Cherny and Madan [11]. The other way could be to introduce some nice subclasses. One
such subclass was introduced by Cherny and Madan [9], [10] under the name MINV@R.
It is defined as WV@R with µ(dx) = (N(N − 1))−1x(1 − x)N−2dx and has a very simple
representation:

MINV@RN(X) = −E{X1, . . . , XN}, (1.5)

where X1, . . . , XN are independent copies of X.5 Thus, MINV@R has the advantage over
CV@R in being a smoother risk measure and retains the advantage of having a simple
representation.

Theorem 3.1 provides a representation of WV@R contributions in the case of a fi-
nite Ω, which yields a numerical algorithm for the estimation of these risk contributions
(its “projection” on CV@R is Corollary 3.3). The result of Theorem 3.4 provides both
a numerical procedure and an elegant representation of MINV@R contributions. This
theorem states that

MINV@Rd
N(X; Y ) = −E min{Xi : i ∈ argminnYn},

MINV@Rl
N(X; Y ) = −E

∑
i∈argminnYn

Xi

| argminnYn|
,

where (X1, Y1), . . . , (XN , YN) are independent copies of (X, Y ) and |A| denotes the number
of elements of A. In particular, if Y has no atoms, then argminn Yn is a.s. a singleton, and
we arrive at the representation obtained (under this assumption) in Cherny and Madan [9;
Sect. 5]:

MINV@Rd
N(X; Y ) = MINV@Rl

N (X; Y ) = −EXargminnYn
.

3. Structure of the paper. In Section 2, we consider the directional risk contri-
bution for general coherent risks and the linear risk contribution for WV@R. Section 3
provides the formulas for calculating risk contributions for WV@R in the discrete case,
for CV@R, and for MINV@R. Section 4 concludes.

2 Risk Contribution

2.1 Directional Risk Contribution

Let (Ω,F , P) be a probability space and ρ be a coherent risk measure defined by ρ(X) =
− infQ∈D EQX, where D is a set of measures absolutely continuous with respect to P.
We will assume that the set of Radon-Nikodym derivatives {dQ/dP : Q ∈ D} is convex,
L1-closed, and uniformly integrable. This assumption is very mild; for example, it is
automatically satisfied for the case when ρ is WV@R, as follows from [8; Th. 4.6].

Traditionally, coherent risks are defined on bounded random variables. However, this
is insufficient for financial applications as most distributions (e.g. the Gaussian one) are
unbounded. We will consider ρ on the space

L1(D) =
{
X ∈ L0 : lim

n→∞
sup
Q∈D

EQ|X|I(|X| > n) = 0
}
.

5The proof is actually very simple. One of equivalent representations of WV@R is: WV@Rµ(X) =

−EX̃, where X̃ is a random variable with the distribution function D
X̃

= Ψµ ◦ DX and Ψµ(x) =∫ x

0

∫
1

y
z−1µ(dz)dy. For µ(dx) = (N(N − 1))−1x(1 − x)N−2dx, we have Ψµ(x) = 1 − (1 − x)N , so that

X̃
Law
= min{X1, . . . , XN}.
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It is easy to check that it is a linear space. For WV@R, we have a simpler representation
(see [7; Prop. 2.6]):

L1(D) =
{
X ∈ L0 : sup

Q∈D

EQ|X| < ∞
}
.

If the weighting measure µ furthermore satisfies
∫ 1

0
λ−1µ(dλ) < ∞, as is the case for

MINV@R, then L1(D) = L1, as seen from [8; Th. 4.6].
Let X, Y ∈ L1(D). As the function ε 7→ ρ(Y +εX) is finite and convex, there exists the

directional risk contribution ρd(X; Y ) defined by (1.1). Furthermore, the set of extreme
measures X (Y ) = argminQ∈D EQY is non-empty (see [7; Prop. 2.9]).

The next proposition provides the form of ρd(X; Y ). It is borrowed from [8]. As the
proof is rather short, we repeat it here. The key idea is the introduction of the notion of
a generator.

Theorem 2.1. For X, Y ∈ L1(D), we have

ρd(X; Y ) = − inf
Q∈X (Y )

EQX.

-

6y

b

a x

G

Figure 1

Proof. (The proof is illustrated by Figure 1.) The key step is to introduce the set

G = cl{EQ(X, Y ) : Q ∈ D},

where “cl” denotes the closure. Obviously, G is a convex compact in R
2. It is called the

generator of X, Y , according to the terminology of [8]. The role of G is seen from the line

ρ(αX + βY ) = − inf
Q∈D

EQ(αX + βY )

= − inf
Q∈D

〈(α, β), EQ(X, Y )〉

= −min
x∈G

〈(α, β), x〉, α, β ∈ R.

Set b = min{y : (x, y) ∈ G}, a = min{x : (x, b) ∈ G}. For ε > 0, the minimum
min(x,y)∈G〈(ε, 1), (x, y)〉 is attained at a point (a(ε), b(ε)). We obviously have a(ε) ≤ a,
b(ε) ≥ b, and (a(ε), b(ε)) −−→

ε↓0
(a, b). Furthermore, εa(ε) + b(ε) ≤ εa + b, which implies

that 0 ≤ b(ε) − b ≤ ε(a − a(ε)). As a result,

lim
ε↓0

ε−1[ρ(Y + εX) − ρ(Y )] = − lim
ε↓0

ε−1[εa(ε) + b(ε) − b]

= −a − lim
ε↓0

ε−1[b(ε) − b]

= −a = − inf
Q∈X (Y )

EQX.
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2.2 Linear Risk Contribution

Let ρ be a coherent risk measure. In this subsection, we restrict attention to bounded
random variables. This is a typical restriction imposed to obtain a representation result.

Definition 2.2. A linear risk contribution is a functional ρl(X; Y ) defined on L∞×L∞

and satisfying the axioms:

(i) (Linearity) ρl(a1X1 + a2X2; Y ) = a1ρ
l(X1; Y ) + a2ρ

l(X2; Y ) for a1, a2 ∈ R;
(ii) (Diversification) ρl(X; Y ) ≤ ρ(X);
(iii) (Consistency) ρl(X; X) = ρ(X);
(iv) (Law invariance) ρl(X; Y ) depends only on the joint law of (X, Y );

(v) (Continuity in X) If |Xn| ≤ 1 and Xn
P
−→ X, then ρl(Xn; Y ) → ρl(X; Y ).

Theorem 2.3 shows that the linear risk contribution exists and is unique at least for
the case when ρ is WV@R. Recall that WV@R is defined as

WV@Rµ(X) =

∫ 1

0

CV@Rλ(X)µ(dλ), X ∈ L∞,

where µ is a probability measure on (0, 1],

CV@Rλ(X) = − inf
Q∈Dλ

EQX, X ∈ L∞, (2.1)

and Dλ = {Q : dQ/dP ≤ λ ≤ λ−1}. For more information on this risk measure, we refer
to [2], [8], and [17; Sect. 4.6].

WV@Rµ is a coherent risk measure, so that there exists a set D of probability measures
absolutely continuous with respect to P such that WV@Rµ(X) = − infQ∈D EQX, X ∈ L∞.
We will denote by Dµ the largest set D, for which this representation is true. Measures
from Dµ (denoted below by Q) will be identified with their Radon-Nikodym derivatives
with respect to P (denoted below by Z). For various representations of Dµ, see [6] and [8;
Sect. 4]. In particular, it is seen from those representations that Dµ is convex, L1-closed,
and uniformly integrable. As mentioned above, this guarantees that, for any Y ∈ L∞, the
set Xµ(Y ) = argminQ∈Dµ

EQY is non-empty. Furthermore, as shown in [8; Th. 6.3], there
exists a particular representative Z∗

Y of Xµ(Y ) that is the smallest in the second-order
stochastic dominance, i.e. Ef(Z∗

Y ) ≤ Ef(Z) for any convex function f of linear growth
and any Z ∈ Xµ(Y ). The element Z∗

Y is unique and is given by Z∗
Y = ϕµ(Y ), where

ϕµ(y) =

∫

(DY (y−),DY (y))

1 − λ−1DY (y−)

DY (y) − DY (y−)
µ(dλ) +

∫

[DY (y),1]

λ−1µ(dλ), y ∈ R.

We will denote the corresponding measure by Q∗(Y ).

Theorem 2.3. Suppose that the probability space is atomless.6 For WV@R, the linear

risk contribution exists, is unique, and is given by

WV@Rl
µ(X; Y ) = −EQ∗(Y )X = −E[Xϕµ(Y )]. (2.2)

6Recall that this means that, for any A ∈ F with P(A) > 0, there exist A′ ⊆ A such that P(A′) > 0
and P(A \ A′) > 0.
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Proof. Obviously, (2.2) defines a linear risk contribution. Let us prove the uniqueness
part. Let WV@Rl

µ(X; Y ) be a linear risk contribution. Fix Y ∈ L∞.

For r ∈ R, consider the set Cr = {X ∈ L∞ : WV@Rl
µ(X; Y ) ≤ r}. Due to (v), for

any n, the set Cr,n = Cr ∩ {‖X‖∞ ≤ n} is closed in probability. Hence, it is L1-closed
(considered as a subset of L1). Due to (i), it is convex, so by the Hahn-Banach theorem
it is σ(L1, L∞)-closed. As L∞ ⊂ L1, Cr,n is σ(L∞, L1)-closed. By the Krein-Smulian
theorem (see [15; Th. V.5.7]) Cr is σ(L∞, L1)-closed. This means that WV@Rl

µ( · ; Y )
is σ(L∞, L1)-continuous. As this functional is linear, there exists Z ∈ L1 such that
WV@Rl

µ(X; Y ) = −EZX for any X ∈ L∞.
Suppose that Z /∈ Dµ. As Dµ is convex and L1-closed, then, by the Hahn-Banach

theorem, there exists X ∈ L∞ such that EZX < infZ∈Dµ
EZX. But this contradicts (ii).

Consequently, Z ∈ Dµ.
Taking (iii) into consideration, we see that Z ∈ Xµ(Y ).
According to [8; Prop. 6.2], there exists a B((0, 1]) × F -measurable function Z(λ, ω)

such that Z =
∫ 1

0
Zλµ(dλ) (here Zλ(ω) = Z(λ, ω)) and






Zλ = λ−1 a.e. on {Y < qλ(Y )},

0 ≤ Zλ ≤ λ−1 a.e. on {Y = qλ(Y )},

Zλ = 0 a.e. on {Y > qλ(Y )},

(2.3)

where qλ denotes a λ-quantile. For each λ ∈ (0, 1], consider the random variable

Z∗
λ =






λ−1 on {Y < qλ(Y )},

cλ on {Y = qλ(Y )},

0 on {Y > qλ(Y )},

(2.4)

where cλ is chosen in such a way that EZ∗
λ = 1. Define Z∗ =

∫ 1

0
Z∗

λµ(dλ). We can represent
Ω as a disjoint union A ∪ (

⋃∞

n=1 An) so that Y has a continuous distribution on A and Y
is constant on each An. Note that, for any n, Zλ = Z∗

λ a.e. on A. Hence, Z = Z∗ a.e.
on A.

Fix n and suppose that Z is not constant on An. As the probability space is atomless,
there exist sets B, B ′ ⊆ An such that P(B) = P(B ′) and EI(B)Z 6= EI(B ′)Z. But then,

for X = IB and X ′ = IB′ , we have (X, Y )
Law
= (X ′, Y ), while EZX 6= EZX ′, which

contradicts (iv). As a result, Z is a.e. constant on each An.
Note that each Z∗

λ is Y -measurable. Hence, Z∗ is Y -measurable. As Z = Z∗ a.e. on A
and Z is constant on each An, we see that Z is Y -measurable. Obviously, E(Zλ |Y ) = Z∗

λ.
As a result,

Z = E(Z |Y ) =

∫ 1

0

E(Zλ |Y )µ(dλ) =

∫ 1

0

Z∗
λµ(dλ) = Z∗.

It remains to note that Z∗
λ = ϕλ(Y ), where

ϕλ(y) =
1 − λ−1DY (y−)

DY (y) − DY (y−)
I(DY (y−) < λ < DY (y)) + λ−1I(λ ≥ DY (y)).

Clearly,
∫ 1

0
ϕλ(y)µ(dλ) = ϕµ(y). Thus,

WV@Rl
µ(X; Y ) = −EZX = −EZ∗X = E[Xϕµ(Y )].
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Corollary 2.4. If Y has a continuous distribution, then X (Y ) is a singleton and

WV@Rd
µ(X; Y ) = WV@Rl

µ(X; Y ) = −E

[
X

∫

[DY (Y ),1]

λ−1µ(dλ)

]
.

With no continuity assumption on the law of Y , the above statement is wrong, as
shown by the next example.

Example 2.5. Let µ = δλ, i.e. ρ is CV@Rλ. Let Y ∈ L∞ be such that
P(Y < qλ(Y )) < λ and P(Y ≤ qλ(Y )) > λ, i.e. Y has an atom at its λ-quantile. Then
Xµ(Y ) consists of the densities satisfying (2.3), while Q∗(Y ) has the density given by (2.4)
(see [8]). Thus, there exists X ∈ L∞ such that

CV@Rd
λ(X; Y ) = − inf

Q∈Xµ(Y )

EQX > −EQ∗(Y ) = CV@Rl
λ(X; Y ).

For example, if Y = 0, then Xµ(Y ) = D and Q∗(Y ) = P, so that CV@Rd
λ(X; Y ) =

CV@Rλ(X), while CV@Rl
λ(X; Y ) = −EX.

Remarks. (i) Representation (2.2) allows us to extend WV@Rl
µ to X, Y ∈ L1(Dµ).

This is similar to the situation with coherent risk measures: the representation theorem
is proved on L∞, and then, using this representation, one can extend a risk measure to a
wider class of random variables (as was done at the beginning of Subsection 2.1).

(ii) Conditions (i)–(iii) of Definition 2.2 are the same as those in Kalkbrenner [18]. He
also introduces a continuity in Y assumption requiring that

lim
ε→0

ρ(X; Y + εX) = ρ(X; Y ).

As proved in [18; Th. 3.1], if ρ(X; Y ) satisfies (i)–(iii) and the above continuity assumption,
then

ρ(X; Y ) = lim
ε→0

ε−1[ρ(Y + εX) − ρ(Y )] (2.5)

(note that here ε is not assumed to be positive). However, ρ(X; Y ) determined this way
does not always exist. Indeed, in the framework of Example 2.5,

lim
ε↓0

ε−1[ρ(Y + εX) − ρ(Y )] = − inf
Q∈Xµ(Y )

EQX,

lim
ε↓0

(−ε)−1[ρ(Y − εX) − ρ(Y )] = − sup
Q∈Xµ(Y )

EQX,

so that limit (2.5) does not exist.
On the other hand, conditions (i)–(iii) without continuity in Y do not identify the

risk contribution uniquely. Again in the framework of Example 2.5 if we choose for each
Y ∈ L∞ a representative Q(Y ) from Xµ(Y ), then the functional ρ(X; Y ) = −EQ(Y )X
satisfies (i)–(iii).

(iii) Unlike [18], we do not impose in our axiomatics any assumption of the continuity
of ρ(X; Y ) in Y . Nevertheless, a certain continuity in Y does hold for WV@Rl

µ(X; Y ).
Namely, if X, Y ∈ L∞ and (Zn) is a family of bounded random variables such that each Zn

is independent of (X, Y ) and Zn
P
−→ 0, then WV@Rl

µ(X; Y + Zn) −−−→
n→∞

WV@Rl
µ(X; Y )

(see [8; Th. 6.5]).
(iv) It is clear from conditions (iii) and (iv) of Definition 2.2 that ρl can exist only for

a law invariant risk measure ρ, i.e. ρ(X) should depend only on the law of X. The class
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of law invariant risk measures is wider than WV@R: the result of Kusuoka [20] states
that (on an atomless probability space) a coherent risk measure ρ is law invariant if and
only if it can be represented as infµ∈M WV@Rµ(X) with a set M of probability measures
on (0, 1]. However, for a general law invariant risk measure, both the existence and the
uniqueness of ρl might be violated.

For example, let ρ(X) = − infQ∈D0
EQX, where D0 is the set of all probability mea-

sures absolutely continuous with respect to P. Then ρ(X) = − essinfω X(ω) and if
P(Y = essinfω Y (ω)) = 0, then argminQ∈D0

EQY = ∅. On the other hand, the proof
of Theorem 2.3 shows that ρl(X; Y ) should be represented as −EQ(Y )X with Q(y) ∈
argminQ∈D0

EQY . So, in this case ρl does not exist.
To construct an example with the non-uniqueness of ρl, consider ρ(X) =

WV@Rµ1
(X) ∨ WV@Rµ2

(X). Denote by ϕ1 and ϕ2 the function ϕµ corresponding to µ1

and µ2, respectively. If we take

ZY =

{
ϕ1(Y ) if WV@Rµ1

(Y ) > WV@Rµ2
(Y ),

ϕ2(Y ) if WV@Rµ1
(Y ) ≤ WV@Rµ2

(Y ),

Z ′
Y =

{
ϕ1(Y ) if WV@Rµ1

(Y ) ≥ WV@Rµ2
(Y ),

ϕ2(Y ) if WV@Rµ1
(Y ) < WV@Rµ2

(Y ),

then both functionals −EZY X and −EZ ′
Y X are linear risk contributions.

3 Examples

3.1 Weighted V@R in Discrete Case

Let Ω = {1, . . . , M} endowed with the uniform measure. The typical situation is that
we have M empirical realizations (x1, y1), . . . , (xM , yM) of (X, Y ) and replace the true
distribution by the empirical one, i.e. we consider the random variables defined as X(m) =
xm, Y (m) = ym, m ∈ Ω. Let n(m) be a permutation of {1, . . . , M} such that the sequence
Y (n(m)) is increasing and X(n(m)) is increasing over any interval of {1, . . . , M}, over
which Y (n(m)) is constant. Let 0 = l0 < l1 < · · · < lK = M be numbers such that
Y (n(m)) is constant for m = lk−1 + 1, . . . , lk and Y (n(lk)) < Y (n(lk + 1)).

Theorem 3.1. We have

WV@Rd
µ(X; Y ) = −

M∑

m=1

X(n(m))

[
Ψµ

(
m

M

)
− Ψµ

(
m − 1

M

)]
, (3.1)

WV@Rl
µ(X; Y ) = −

K∑

k=1

lk∑

m=lk−1+1

X(n(m))

lk − lk−1

[
Ψµ

(
lk
M

)
− Ψµ

(
lk−1

M

)]
, (3.2)

where

Ψµ(x) =

∫ x

0

∫ 1

y

z−1µ(dz)dy, x ∈ [0, 1].

In particular, if Y (1), . . . , Y (M) are different, then

WV@Rd
µ(X; Y ) = WV@Rl

µ(X; Y ) = −
M∑

m=1

X(n(m))

[
Ψµ

(
m

M

)
− Ψµ

(
m − 1

M

)]
,

where n(m) is the unique permutation of {1, . . . , M} such that Y (n(m)) is increasing.
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Proof. One of equivalent representations of WV@R, which follows from [17; Th. 4.64],

is as follows: WV@Rµ(Z) = −EZ̃, where Z̃ has the distribution function Ψµ ◦ DZ . It is
seen from this representation that in our case we have for any random variable Z on Ω,

WV@Rµ(Z) = −
M∑

m=1

Z(i(m))

[
Ψµ

(
m

M

)
− Ψµ

(
m − 1

M

)]
, (3.3)

where i(m) is any permutation of {1, . . . , M} such that Z(i(m)) is increasing.
It is obvious that, for the permutation n(m), there exists δ > 0 such that, for any

ε ∈ [0, δ], the sequence (Y (n(m)) + εX(n(m))) is increasing. Then, for any ε ∈ [0, δ],

WV@Rµ(Y + εX) = −
M∑

m=1

[Y (n(m)) + εX(n(m))]

[
Ψµ

(
m

M

)
− Ψµ

(
m − 1

M

)]
,

from which (3.1) is obvious.
The functional ρ(X; Y ) defined by the right-hand side of (3.2) (it is meant that the per-

mutation n(m) depends on (X, Y )) satisfies conditions (i), (iv), and (v) of Definition 2.2.
It follows from (3.3) that it also satisfies (iii). To prove (ii), consider the function

f : {1, . . . , M} 3 m 7−→
1

lk(m) − lk(m)−1

[
Ψµ

(
lk(m)

M

)
− Ψµ

(
lk(m)−1

M

)]
,

where k(m) is such that lk(m)−1 < m ≤ lk(m). As Ψµ is concave, f is decreasing. A discrete
version of the Hardy-Littlewood inequality (see [17; Th. A.24]) shows that

M∑

m=1

X(n(m))f(m) ≥
M∑

m=1

X(i(m))f(m),

where i(m) is a permutation of {1, . . . , M} such that X(i(m)) is increasing. It is obvious
that

M∑

m=1

X(i(m))f(m) =

M∑

m=1

X(i(m))

[
Ψµ

(
m

M

)
− Ψµ

(
m − 1

M

)]
.

Recalling (3.3), we see that condition (ii) of Definition 2.2 is satisfied. Now, an application
of Theorem 2.3 yields (3.2). 2

3.2 Conditional V@R

CV@R is defined by (2.1). It is a particular case of WV@R with µ = δλ. It is easy
to check that the set Dδλ

coincides with the set Dλ standing in (2.1). It is clear that
L1(Dλ) = L1. For Y ∈ L1, the set Xλ(Y ) = argminQ∈Dλ

EQY consists of the densities Z
such that Z = λ−1 a.e. on {Y < qλ(Y )}, 0 ≤ Z ≤ λ−1 a.e. on {Y = qλ(Y )}, and Z = 0
a.e. on {Y > qλ(Y )} (see [8; Prop. 2.7]). The measure Q∗(Y ) has the density

Z∗
λ = λ−1I(Y < qλ(Y )) +

1 − λ−1DY (qλ(Y )−)

DY (qλ(Y )) − DY (qλ(Y )−)
I(Y = qλ(Y )).

For X, Y ∈ L1, we define CV@Rλ(X; Y ) by (2.2). Then Theorem 2.3 yields
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Corollary 3.2. For X, Y ∈ L1, we have

CV@Rl
λ(X; Y ) = −λ−1E[XI(Y < qλ(Y ))]−

1 − λ−1DY (qλ(Y )−)

DY (qλ(Y )) − DY (qλ(Y )−)
E[XI(Y = qλ(Y ))].

In particular, if Y has a continuous distribution, then

CV@Rd
λ(X; Y ) = CV@Rl

λ(X; Y ) = −E[X |Y ≤ qλ(Y )].

Let us now consider the setting of Subsection 3.1 and assume that λ = N/M . Find k
such that lk−1 < N ≤ lk. Then Theorem 3.1 yields

Corollary 3.3. We have

CV@Rd
λ(X; Y ) = −

1

N

N∑

m=1

X(n(m)),

CV@Rl
λ(X; Y ) = −

1

N

lk−1∑

m=1

X(n(m)) −
N − lk−1

N(lk − lk−1)

lk∑

m=lk−1+1

X(n(m)).

In particular, if Y (1), . . . , Y (M) are different, then

CV@Rd
λ(X; Y ) = CV@Rl

λ(X; Y ) = −
1

N

N∑

m=1

X(n(m)),

where n(m) is the unique permutation of {1, . . . , M} such that Y (n(m)) is increasing.

3.3 MINV@R

MINV@R is a particular case of WV@R with µ(dx) = (N(N −1))−1x(1−x)N−2dx, where

N is a fixed natural number. For this µ, we have
∫ 1

0
λ−1µ(dλ) < ∞, which means that

any density from Dµ is bounded; see [8; Th. 4.6]. It is also seen from the representation
of Dµ that P ∈ Dµ. As a result, in this case, L1(Dµ) = L1.

For X, Y ∈ L1, we define MINV@Rl
N(X; Y ) by (2.2). The expectation EQ∗(Y )X exists

since dQ∗(Y )/dP is bounded.

Theorem 3.4. For X, Y ∈ L1, we have

MINV@Rd
N(X; Y ) = −E min{Xi : i ∈ argminnYn}, (3.4)

MINV@Rl
N(X; Y ) = −E

∑
i∈argminnYn

Xi

| argminnYn|
, (3.5)

where (X1, Y1), . . . , (XN , YN) are independent copies of (X, Y ) and |A| denotes the number

of elements of A. In particular, if Y has a continuous distribution, then

MINV@Rd
N(X; Y ) = MINV@Rl

N (X; Y ) = −EXargminnYn
.

Proof. For X, Y ∈ L1, we have

ε−1[min{Y1 + εX1, . . . , YN + εXN} − min{Y1, . . . , YN}]
a.s.
−−→
ε↓0

min{Xi : i ∈ argminnYn}

11



and

|ε−1[min{Y1 + εX1, . . . , YN + εXN} − min{Y1, . . . , YN}]| ≤
N∑

n=1

|Xn|.

Recalling representation (1.5), we get (3.4).
Let us prove (3.5) first for bounded X, Y . Define a map ρ(X; Y ) on L∞ × L∞ by

the right-hand side of (3.5). This map obviously satisfies conditions (ii), (iii), and (iv)
of Definition 2.2. Let us check (i). Fix X1, X2, Y ∈ L∞ and let (X1n, X2n, Y )N

n=1 be
independent copies of (X1, X2, Y ). Then (a1X1n + a2X2n, Yn)N

n=1 are independent copies
of (a1X1 + a2X2, Y ). Furthermore,

a1

∑
i∈argminnYn

X1i

| argminnYn|
+ a2

∑
i∈argminnYn

X2i

| argminnYn|
=

∑
i∈argminnYn

(a1X1i + a2X2i)

| argminnYn|
,

so that (i) is satisfied.

To check (v), consider X, Y , and Xk
P
−→ X with |Xk| ≤ 1. Let

(Xn, Yn, X1n, X2n, . . . )N
n=1 be independent copies of the infinite-dimensional vector

(X, Y, X1, X2, . . . ). Then

∣∣∣∣

∑
i∈argminnYn

Xki

| argminnYn|
−

∑
i∈argminnYn

Xi

| argminnYn|

∣∣∣∣ ≤
N∑

n=1

|Xkn − Xn|. (3.6)

As E
∑

n |Xkn − Xn| −−−→
k→∞

0, we get ρ(Xk; Y ) −−−→
k→∞

ρ(X; Y ). Thus, (v) is proved and

Theorem 2.3 yields (3.5) for bounded X, Y .
Let now X ∈ L1, Y ∈ L∞. Consider Xk = (−k)∨X∧k. As dQ∗(Y )/dP is bounded, we

have MINV@Rl
N(Xk; Y ) → MINV@Rl

N(X; Y ). The estimate (3.6) shows the convergence
of the right-hand sides of (3.5). Thus, we get (3.5) for X ∈ L1, Y ∈ L∞.

Finally, for X ∈ L1, Y ∈ L1, consider Ỹ = arctan Y . The density dQ∗(Y )/dP is a

function of DY (Y ), while dQ∗(Ỹ )/dP is the same function applied to D
Ỹ
(Ỹ ). It is clear

that D
Ỹ
(Ỹ ) = DY (Y ), so that MINV@Rl

N(X; Ỹ ) = MINV@Rl
N (X; Y ). It is obvious that

the right-hand sides of (3.5) coincide for (X, Y ) and (X, Ỹ ). Thus, (3.5) is proved. 2

The above theorem provides a way for the numerical estimation of MINV@R contri-
butions. In order to apply MINV@R, we first have to choose N . One way to do that could
be to take a benchmark distribution X and a benchmark risk measure ρ and to find N ,
for which MINV@RN(X) is closest to ρ(X). If X has a density pX , then the formula for
MINV@RN (X) is very simple:

MINV@RN(X) = −

∫

R

xdΨµ(DX(x))

= −

∫

R

xd(1 − (1 − DX(x)))N

= −

∫

R

Nx(1 − DX(x))N−1pX(x)dx

(the first equality follows from [17; Th. 4.64]). For example, if X is Gaussian and ρ is
5%-V@R, then N = 12.

Then one should take time series for X, Y and divide it into blocks of length N . Within
each block, one should find the places, at which the smallest realizations of Y stand. In
order to estimate MINV@Rd

N(X, Y ), one should take the smallest realization of X over
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those places and then take the average over the blocks with the minus sign. In order to
estimate MINV@Rl

N(X; Y ), one should first average the realizations of X over the places
with the smallest Y within each block and then take the average over the blocks with the
minus sign.

4 Conclusion

We have considered two approaches to the coherent risk contribution. The directional
risk contribution ρd(X; Y ) for a risk measure ρ(X) = − infQ∈D EQX is defined as the
directional derivative of the risk ρ at the point Y in the direction X. It exists under very
mild assumptions and equals − infQ∈X (Y ) EQY , where X (Y ) = argminQ∈D EQY is the set
of extreme measures.

The linear risk contribution ρl(X; Y ) was defined through a set of axioms. For WV@R,
which is a very wide class of coherent risks, ρl(X; Y ) exists, is unique, and is given by
−EQ∗(Y )X, where Q∗(Y ) is a particular representative of X (Y ). If Y has a continuous
distribution, then ρd(X; Y ) = ρl(X; Y ). However, if Y has atoms, which is typical for
credit risk considerations, then the two risk contributions are different and we only have
the inequality WV@Rd

µ(X; Y ) ≥ WV@Rl
µ(X; Y ).

A particularly simple representative of WV@R is MINV@R defined as the expectation
of the minimum of N independent draws from the distribution of X. Its advantage over
CV@R is that it is a smoother risk measure. It was shown that both the directional and
the linear MINV@R contributions admit simple representations, which also provides an
empirical estimation procedure.

An algorithm for the empirical estimation of WV@R contributions has also been pro-
vided.

Each of the two risk contributions have its own advantages: the property (1.2) for the
directional risk contribution and the linearity property for the linear risk contribution.
Maybe, the latter property is more important because it is desirable for the capital allo-
cation considerations, where the sum of risk contributions of several subportfolios should
be equal to the risk of the whole portfolio.
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