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Abstract. The first goal of this paper is to give an adequate definition of
the stochastic integral

/ H,dXs, (%)
0

where H = (Hy);>o is a predictable process and X = (X;);>0 is a semimartin-
gale. We consider two different definitions of (x): as a stochastic integral up to
infinity and as an improper stochastic integral.

The second goal of the paper is to give the necessary and sufficient conditions
for the existence of the stochastic integral

t
/Hsts, t>0
0

and for the existence of the stochastic integral up to infinity (). These conditions
are expressed in predictable terms, i.e. in terms of the predictable characteristics
of X.

Moreover, we define the notion of a semimartingale up to infinity (martingale
up to infinity, etc.) and show its connection with the existence of the stochastic
integral up to infinity. We also introduce the notion of «y-localization.

Key words and phrases. Characteristics of a semimartingale, Fundamental
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1 Introduction

In the classical analysis there are two approaches to defining the integral fooo h(s)ds,
where h is a Borel function. In the first approach, the improper integral fooo h(s)ds is
defined as

o] t
/0 h(s)ds ::tlir{.é ) h(s)ds,
where fot h(s)ds is the “usual” Lebesgue integral over [0,¢]. In the second approach,
the integral up to infinity i~ h(s)ds is defined as the Lebesgue integral over [0, c0).
Obviously, the classes

L= {h:VtZO, /0t|h(s)|ds<oo}, (1.1)

Limp = {h € L:3lim h(s)ds}, (1.2)

t—o0 0
L[O,oo):{h:/o h(s)lds < oc} (1.3)

satisfy the following strict inclusions: Lo o) C Limp C L.

This paper has two main goals. The first goal is to give the corresponding defini-
tions of the improper stochastic integral fooo H,dX, and of the stochastic integral up to
infinity fooo H,dX,, where H = Hy(w) is a predictable process and X = X;(w), t > 0,
w € () is a semimartingale. The second goal is to derive a criterion for the existence
of the stochastic integral up to infinity fooo H,dX; given in the “predictable” terms
(see Theorem 4.5). For more information on “predictability”, see the monograph [10]
by J. Jacod and A.N. Shiryaev. The second edition of this monograph contains a pre-
dictable criterion for the existence of stochastic integrals fot H X, t > 0 (see [10;
Ch. III, Theorem 6.30]). In this paper, we also derive a predictable criterion for the
existence of these integrals (see Theorem 3.2). Our method differs slightly from the
one in [10]. As a result, we get a simpler criterion.

The notion of a stochastic integral up to infinity is closely connected with the notion
of a semimartingale up to infinity. These processes as well as martingales up to infinity,
etc. are considered in Section 2. C. Stricker [20] also considered ”semimartingales
jusqu’a l'infini”. He used another definition, but it is equivalent to our definition.
The notions of a process with finite variation up to infinity and local martingale up to
infinity introduced in Section 2 are closely connected with the notion of ~-localization
that is also introduced in Section 2.

In Section 3, we recall the definition of a stochastic integral (that is sometimes
called the vector stochastic integral) and give the predictable criterion for integrability.

Section 4 contains several equivalent definitions of the stochastic integral up to
infinity, the definition of the improper stochastic integral as well as the predictable
criterion for integrability up to infinity. This criterion is then applied to stable Lévy
processes.

In Section 5, we show how the stochastic integrals up to infinity can be used in
the mathematical finance (to be more precise, in the Fundamental Theorems of Asset
Pricing).

Throughout the paper, a filtered probability space (Q,f, (Fi)i>o0, P) is supposed
to be fixed. The filtration (F;) is assumed to be right-continuous.
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2 Semimartingales up to Infinity

1. Notations and definitions. In this section, we consider only one-dimensional
processes. The extension to the multidimensional case is straightforward.

We will use the notations A, V, M, My, Sy, and S for the classes of pro-
cesses with locally integrable variation, processes with finite variation, martingales,
local martingales, special semimartingales, and semimartingales, respectively.

Definition 2.1. We will call a process Z = (Z;);>0 a process with locally integrable
variation up to infinity (resp: process with finite variation up to infinity, martingale
up to infinity, local martingale up to infinity, special semimartingale up to infinity,
semimartingale up to infinity) if there exists a process Z = (Z;);>0 such that

Zy=Z., t<l (2.1)

and Z is a process with locally integrable variation (resp: process with finite variation,
martingale, local martingale, special semimartingale, semimartingale) with respect to

the filtration
— F, t<l1,
ft == -t (22)
F,  t>1.

We will use the notations Aiac,[0,00)5 Vjo,00)> Mio,00): Mioc,[0,00)5 Sp,[0,00)s Sjo,00) fOT
these classes of processes.

Note that Aloc,[O,oo) C Alom V[O,oo) C Va M[U,oo) C Ma Mloc,[(],oo) C Mloca

Sp,0,00) C Spy Sjo,00) C S, and all the inclusions are strict.

)

2. Basic properties. In the stochastic analysis there exist two types of the
“localization” procedure: localization (see [10; Ch. I, §1d]) and o -localization (see [10;
Ch. III, §6e]). Let us introduce one more type.

Definition 2.2. Let C be a class of random processes. The v-localized class C,
consists of the processes X, for which there exists an increasing sequence of stopping
times (7,) such that {7, = oo} 1 Q a.s. and, for each n, the stopped process X;" :=
Xinr, belongs to C.

Lemma 2.3. We have A j0,00) = Ay, where A is the class of processes with
integrable variation.

The proof is straightforward.

Lemma 2.4. The class M) coincides with the class of uniformly integrable
martingales.

Proof. This statement follows from the fact that the class of uniformly integrable
martingales coincides with the class of the Lévy martingales, i.e. processes Z of the
form Zt:E(Zoo|ft),t20 O

Lemma 2.5. The following conditions are equivalent:
(1) RS Mloc,[O,oo)Q

(i) Z € (Mo,00))y;

(iil) Z € Mye and [Z]'/? € Ary.



Proof. (i)=-(iii) This implication follows from the fact that, for a local martin-
gale M, [M]'/? € Ap. (see [10; Ch. I, Corollary 4.55]).

(iii)=(ii) This implication follows from the Davis inequality (see [16; Ch. I, §9,
Theorem 6]).

(ii)= (i) This implication is obvious. O

The following statement characterizes the semimartingales as the “L°-integrators”.
Recall that a collection of random variables (£))xea is bounded in probability if for any
e > 0, there exists M > 0 such that P(|{,] > M) < ¢ for any A € A. Recall that a

stopping time is called simple if it takes only a finite number of values, all of which are
finite.

Proposition 2.6. Let Z be a cadlag (F;)-adapted process. Then Z € S if and
only if for any t > 0, the collection

t n
{ / H,dZ, : H has the form » _ h;ljs, 1,7, where $; < Ty <--- < S, < T,
0 i=1
are simple (F;)-stopping times and h; € [—1, 1]}

is bounded in probability. (Note that fot HydZ, here is actually a finite sum.)

For the proof, see [2; Theorem 7.6].

The next statement characterizes the semimartingales up to infinity as the “L°-
integrators up to infinity”. Recall that the space HP consists of semimartingales 2,
for which there exists a decomposition Z = A+ M with A € V, M € My, and
E(Var A)2, + E[M]%* < oc.

Lemma 2.7. The following conditions are equivalent:

(i) Z € S[0,00) ;

(ii) there exists a decomposition Z = A+ M with A € Vo), M € Mioe,[0,00)

(iil) there exists an increasing sequence of stopping times (1,) such that {1, = co} 1
Q a.s. and, for each n, the process Z[*~ = ZI(t < 1,) + Z., _I(t > 7,) belongs to
H;

(iv) Z is a cadlag (F;)-adapted process, and the collection

{ / H,dZ, : H has the form » _ h;Ijs,zy, where $; <Ty <---< S, < T,
° =1 (2.3)
are simple (F;)-stopping times and h; € [—1, 1]}

is bounded in probability. (Note that fooo HdZ here is actually a finite sum.)

Proof. (i)=-(ii) This implication is obvious.

(ii)=(iii) It is sufficient to consider the stopping times 7, = inf{t > 0 :
Var A; > n or [M], > n}, where Z = A+ M is a decomposition of Z with A € V),
M € M]OC’ [0,00) -



(iii)= (iv) Fix € > 0. There exists n such that P(r, = occ) > 1 —¢. Let Z™ =
A+ M be a semimartingale decomposition of Z™~ with E(Var A)s + E[M]}? < oc.

For any process H of the form described in (2.3), we have

/ H.d ST":/ HsdAs+/ H,dM;.
0 0 0

Since |H| < 1, we have E| [~ H,dA,| < E(Var A). It follows from the Davis inequal-
ity (see [16; Ch. I, §9, Theorem 6]) that there exists a constant C' such that, for any
process H of the form described in (2.3), E| [;° H,dM,| < C'. Combining this with
the inequalities

P(/ Hsts:/ H.d ST”_>ZP(THZOO)>1—8,
0 0

(iv)=(i) For any bounded stopping time S, there exists a sequence of simple
stopping times (S) such that Sy | S. Hence, the collection

we get (iv).

{ / H,dZ, : H has the form » _ h;Tjs, 7, where $; < Ty < --- < S, < T,
0

=1

are bounded (F;)-stopping times and h; € [—1, 1]}

is bounded in probability.
For a < b€ Q, n € N, we consider the stopping times
Si=inf{t > 0: 7, < a} An, Ty=inf{t>S,:Z; > b} An,...
Sy, =inf{t > T, 1: 7, <a} An, T, =inf{t > S, : Z;, > b} An.

Take H" =" | Iys, ;7. Then on the set A := {Z upcrosses [a, b] infinitely often} we
have

/ H"dZ, *> .
0

n—oo

Hence, P(A) = 0. As a and b have been chosen arbitrarily, we deduce that there exists
a limit Z, := (a.s.) limy_,00 Z;.
Let us set

_ Z., t<l1,
Zt: 1-t
Lo, t2>1.

Using the continuity of Z at ¢ = 1, one easily verifies that the collection
1 n
{ / H,dZ, : H has the form » _ h;Ijs, 7, where $; < Ty <--- < S, < T,
0 i=1
are simple (F,)-stopping times and h; € [~1, 1]}

is bounded in probability (here (F,) is the filtration given by (2.2)). By Proposition 2.6,
Z is an (F,;)-semimartingale. This means that Z € Sjy ). O

Remark. The description of Sjg . provided by (iii) is C. Stricker’s definition of
“semimartingales jusqu’a l'infini” (see [20]). O
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3 Stochastic Integrals

1. Notations and definitions. By A¢_, VI, M4 Mt 5 S¢ S we denote the
corresponding spaces of d-dimensional processes.

Let A € V?. There exist optional processes a' and an increasing cadlag (F;)-
adapted process F' such that

Al = Al + / a'dF,. (3.1)
0
Consider the space
Lyar(A) = {H = (H',...,H% : H is predictable and,
t
for any t > 0, / |H; - as|dF; < o0 a.s.},
0

where H, - a, := Zle Hia'. Note that L, (A) does not depend on the choice of a’
and F' that satisfy (3.1). For H € Ly, (A), we set

/ H,dA; ::/ H; - a,dFs.
0 0

This is a process with finite variation.
Let M € M. . There exist optional processes 7 and an increasing cadlag
(F:)-adapted process F' such that

[MZ’,MJ’]:/ T dF. (3.2)
0
Consider the space

Ll

loc

(M) = {H = (H',...,H% : H is predictable

. 1/2
and </ HS"H'S'HSdF5> GA]00}7
0

where H -7y« Hy := Z” HimWHJ. Note that L{ (M) does not depend on the
choice of 7/ and F that satisfy (3.2). For H € LL (M), one can define the stochastic
integral [, H,dM, by the approximation procedure (see [19; Section 3]). This process
is a local martingale.

Definition 3.1. Let X € S%. A process H is X-integrable if there exists a de-
composition X = A+ M with A € V¢, M € M{ _ such that H € L.,.(A) N LL.(M).

loc
In this case
/ H,dX, / H,dA, + / H,dM;,.

The space of X -integrable processes is denoted by L(X



For the proof of the correctness of this definition and for the basic properties of
stochastic integrals, see [19].

2. Predictable criterion for the integrability. Let X € 8¢ and (B,C,v) be
the characteristics of X with respect to the truncation function xzI(|z| < 1) (for the
definition, see [10; Ch. II, §2a]). There exist predictable processes b%, ¢/, a transition
kernel K from (© x R,,P) (here P denotes the predictable o-field) to (R?, B(R?)),
and an increasing predictable cadlag process F' such that

Bi:/ bidFy, Cij:/ cIdF,, v(w,dt,dz) = K(w,t,dz)dF,(w)  (3.3)
0 0

(see [10; Ch. II, Proposition 2.9]).

Theorem 3.2. Let H be a d-dimensional predictable process. Set

¢i(H) = ‘Ht - by +/Ht'$ (I(lo] > 1, [Hy - 2] <1) = I(Ja| < 1,|H, - 2| > 1)) Ky(d)
R
+Ht *Ct Ht +/ 1A (Ht : 517)2Kt(dflf), t Z 0. (34)
R
Then H € L(X) if and only if

t
>0, / ou(H)AF, < 00 as. (3.5)
0

The following two statements will be used in the proof.

Proposition 3.3. Let X € Sg and X = Xo+A+M be the canonical decomposition
of X. Let H € L(X). Then [, HdX, € S, if and only if H € Ly, (A) N Li (M). In

loc
this case . _ .
/HstS:/ HsdAs+/ HdM;
0 0 0

18 the canonical decomposition of fo H,dX,.

For the proof, see [9; Proposition 2].

Lemma 3.4. Let p be the jump measure of X and W = W (w,t,x) be a nonneg-
ative bounded P x B(R)-measurable function. Then (W x 11)o < 00 a.s. if and only if
(W % 1)o < 00 a.s.

This statement is a direct consequence of the definition of the compensator (see [10;
Ch. II, §1a]).

Remark. It follows from Lemma 3.4 that
t
vVt >0, / / |Hy - z|I(|x| > 1,|Hs - x| < 1)K (dx)dFs < 0o a.s. (3.6)
0 Jr
Hence, the process ¢(H) in (3.5) can be replaced by a simpler process

G (H) = ‘Ht-bt —/Ht-xl(|z| <1 |H, -2 > 1)K (d)
R

+Ht'Ct'Ht+/1/\(Ht'f17)2Kt(df17), tZO
R



We formulate Theorem 3.2 with the process ¢(H) and not with ¢(H) in order to
achieve the symmetry with the predictable criterion for the integrability up to infinity
(Theorem 4.5), where one can use only ¢(H). O

Proof of Theorem 3.2. The “only if” part. Let Y = fo H,dX,. Consider the set
D = {(w,t) : |AXy(w)| > 1 or |Hy(w) - AXy(w)| > 1}. Then D is a.s. discrete, and
therefore, the processes

X:/ IpdXi, X'=X'-X
0

A~

Y:/IDdYS, V=Y-V
0

A~

are well defined. Obviously, H € Ly (X) C L(X). It follows from the equality
AY = H-AX that [} HdX, =Y. By linearity, H € L(X) and [, HdX, =Y.

Let p denote the jump measure of X and X¢ denote the continuous martingale
part of X. We have

X=Xo+zl(lz|>1)*sp+B+zxl(Jz]| <1)*(p—v)+ X
(see [10; Ch. II, Theorem 2.34]). Then

X =Xo—al(le] <L |H-2| > 1)« p+B+al(|z] <1)# (p—v)+ X°

T (3.7)
::;Xh %-14'+'A4,
where
A=B—zI(|z| <1,|H-z| > 1) *v, (3.8)
M=zI(|z|<1,|H z| <1)*(n—v)+ X (3.9)

The process A s predictable, and therefore, the decomposition X = Xy +£1:+ M is

the canonical decomposition of X . By Proposition 3.3, H € Ly, (A) N LL (M).
The inclusion H € Ly, (A) means that

t
wso. |
0

Note that the continuous martingale part of M is X°. Consequently,

H, b, —/Hs-zl(|z| < L|H, 1] > DE,(dr)|dF, < 0o as. (3.10)
R

(M, M) =" AMIAM! +/ cIdF, (3.11)
0

5<-

(see [10; Ch. I, Theorem 4.52]). Now, the inclusion H € L] (M) implies that

loc

t
vVt >0, / H,-cs- HydF, < oo a.s. (3.12)
0

We have
VE>0, Y (H,-AX,)=> AY?<oo as.,

s<t s<t



and using Lemma 3.4, we obtain
t
VE > 0, / / LA (H, - 22K, (dz)dF, < 00 as. (3.13)
0o Jr

Inequalities (3.6), (3.10), (3.12), and (3.13) taken together yield (3.5).
The “if” part. Combining condition (3.5) with Lemma 3.4, we get

vVt > 0, 2:(Hs “AX)? < oo as. (3.14)

s<t

Hence, the set D introduced above is a.s. discrete. The processes X and X are well
defined, and equalities (3.7)—(3.9) hold true.
Condition (3.5), combined with (3.6), implies (3.10), which means that H € Ly, (A).
It follows from (3.14) that

vVt > 0, Z(HS . A)?S)Q < oo as.

s<t
The inclusion H € Ly (A) implies that

vt > 0, Z |H5-Ags| <00 a.s.

s<t
Taking into account the equality AM = AX — AA , we get

vVt >0, Z(Hs . A]\fzs)2 < oo as.

s<t

Moreover, H-AA =?(H-AX) (see [10; Ch. I, §2d]), which implies that |H-AA| <1,
and hence, |H - AM| < 2. Consequently,

<Z(Hs : AJ\Z)?) " € Ao

5<-

This, combined with (3.11) and (3.12) (that is a consequence of (3.5)), yields the
inclusion H € L} .(M).

As a result, H € L(X). Since obviously H € Lyw(X) C L(X), we get
He L(X). O

Corollary 3.5. Let X be a one-dimensional continuous semimartingale with the

canonical decomposition X = Xog+ A+ M. Then a predictable process H belongs to
L(X) if and only if

t t
Vit >0, / |Hs|d(VarA)s+/ H2A(M), < 00 as.
0 0



3. The application to Lévy processes. Let X be a one-dimensional (F;)-Lévy
process, i.e. X is an (F;)-adapted Lévy process and, for any s < t, the increment
X; — X is independent of F;. The notation X ~ (b, ¢, ), means that

2

Eeir Xt = exp{t [i)\b — %c + /R (e —1— Mh(m))y(dm)} }

For more information on Lévy processes, see [18].
The following corollary of Theorem 3.2 completes the results of O. Kallen-
berg [12], [13], J. Kallsen and A.N. Shiryaev [15], J. Rosinski and W. Woyczynski [17].

Corollary 3.6. Let X be an «-stable (F;)-Lévy process with the Lévy measure

_(muI(z <0)  mol(x>0)
v(dz) = ( e + e dx.

Let H be a predictable process.
(i) Let a € (0,1) and X ~ (b,0,v)o. Then H € L(X) if and only if

t t
vVt >0, |b|/ |H|ds + (mq + m2)/ |Hs|%ds < 00 a.s.
0 0

(ii) Let a« =1 and X ~ (b,0,v), where h(xz) = zI(|x| <1). Then H € L(X) if
and only if

¢ ¢
Vit >0, (|b] +m +m2)/ |Hg|ds + |my — m2|/ |Hs| In |Hy|ds < 0o a.s.
0 0
(iii) Let aw € (1,2) and X ~ (b,0,v),. Then H € L(X) if and only if
¢ ¢
vVt > 0, |b|/ |Hy|ds + (my +m2)/ |Hy|%ds < 00 a.s.
0 0
(iv) Let « =2 and X ~ (b,¢,0). Then H € L(X) if and only if
t t
vVt >0, |b|/ |Hs|d5+c/ Hids < oo a.s.
0 0

Proof. The case @ = 2 is obvious. Let us consider the case a € (0,2). The
semimartingale characteristics (B',C’, ') of X with respect to the truncation function
xI(|z] <1) are given by

B, =1't, C, =0, V' (w,dt,dx) = v(dz)dt.
The value o' is specified below. We have

2(m1 + mg)

H|*, HeR

/R 1A (Ha)20(dz) =

In case (i), we have

V= b+/RxI(|x| < 1)v(dx)

10



and
HY + / Hz(I(|z] > 1,|Hz| < 1) — I(|z| < 1,|Hz| > 1))v(dz)
R
= Hb+sgnH 2" ], HeRr
11—«
In case (ii), we have ¥’ = b and
HY + / Hz(I(|z] > 1,|Hz| < 1) — I(|z| < 1,|Hz| > 1))v(dz)
R
= Hb+ (my —m9)HIn|H|, HeR

In case (iii), we have

b :b—/RxI(|x| > 1)w(ds)

and
HY + / Hx(I(Jz| > 1,|Hz| < 1) — I(|z| < 1,|Hz| > 1))v(dz)
R
:Hb+sgnHw|H|°‘, HeR
1«
The result now follows from Theorem 3.2. O

Corollary 3.7. Let X be a nondegenerate strictly o-stable (F;)-Lévy process.
Then a predictable process H belongs to L(X) if and only if

t
vVt > 0, / |Hg|%ds < 0o a.s.
0

Corollary 3.8. Let X be an (F;)-Lévy process, whose diffusion component is not
equal to zero. Then a predictable process H belongs to L(X) if and only if

t
vt > 0, / HZds < oo a.s.
0

Proof. This statement follows from Theorem 3.2 and the estimates

/RH:E(I(|:E| > 1,|Hz| < 1) — I(|z| < 1,|Hz| > 1))v(dz)

< /I(|x| > 1)1/(dx)+H2/1/\x21/(dx), HeR,
R R

/ 1A (Hz)*v(dz) < (1Vv H?) / 1Az%v(dr), HeER O
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4 Stochastic Integrals up to Infinity and Improper
Stochastic Integrals

1. Various definitions. Let A € V? and o', F satisfy (3.1). Consider the space
Luar, [0.00)(A) = {H = (H',...,H% : H is predictable
and / |H; - as|dFs < oo a.s.}.
0

For H € Lyar,[0,00)(A), we set

/HSdAS::/ H, - a, dFy.
0 0

Let M € ML, and 7%, F satisfy (3.2). Consider the space

loc

Lige. j0.00) (M) = {H = (H',...,H% : H is predictable

. 1/2
and </ H, 7, H, dF;) € Aloc,[(],oo)}'
0
For H € L}

10C’[Oyoo)(M), one can define fooo H,dM, by the approximation procedure
similarly to the definition of fot H.dM,.

Definition 4.1. Let X € §¢. We will say that a process H is X -integrable up to
infinity if there exists a decomposition X = A + M with 4 € V¢, M € M, such
that H € Lyar, [0,00)(A) N L (M). In this case

loc, [0,00)

/Hsts::/ HsdAs+/ Hy,dM;,.
0 0 0

The space of X -integrable up to infinity processes will be denoted by Lo oo)(X).

Remark. The above definition of fooo H,dX, is correct, i.e. it does not depend on
the choice of the decomposition X = A + M. Indeed, it follows from the definition of
[ HydA and [ H,dM, that

t

/ H.dX, = (as) lim | H.dX,. (4.1)
0

t—o0 0

Theorem 4.2. Let X € 8. Then H € Ly )(X) if and only if H € L(X) and
fO H.dX, € 8[0,00) .

Proof. The “only if” part. The inclusion H € Ly, jo,00)(A) implies that
H € Lyw(A) and [ HidA; € Viooo) C Sjo,c)- The inclusion H € Llloc,[U,oo)(M) im-
plies that H € Lj.(M), [, HdM, € M., and

loc

. 1/2 . 1/2
|:/ Hdes:| = (/ Hg-mg- Hy dFs) € Aloc, [0,00)
0 0

12



(the equality here follows from [19; Lemma 4.18]). In view of Lemma 2.5, [; H,dM, €
Mioe, 0,00) € So,0)- As aresult, H € L(X) and [; H,dX, € Sjo,00)-

The “if ” part. Proposition 2.6 and Lemma 2.7 combined together show that one can
find deterministic functions K, ..., K¢ such that, for each i, K* > 0, K € L(X") and
Yii= [((K!)7'dX! € Sjgo0)- It follows from the associativity property of stochastic
integrals (see [19; Theorem 4.7]) that the process J = (K'H!,..., K?H?) belongs to
L(Y) and, for the process Z = [, J,dY;, we have Z = [, HydX,; € Sjg ). Set

— Yo, t<1, — Z o, 1<, — Je o t<1,
Yt = 1-t Zt = 1-t Jt — 1—t
Yooo 21, Zooy 21, 0, t>1
Let us prove that J € L(Y). It will suffice to verify (see [19; Lemma 4.13]) that,
for any sequences a, < b, with a, — oc and any sequence (Gn) of one-dimensional

(F,)-predictable processes with |G| < 1 (here (F;) is the filtration given by (2.2)),
we have

1-1/n e . .
/ G T I(an < [J,| < by)dY, —— 0. (4.2)
0 n—oo
We can write

1-1/n . . n—1
/ G T I (an < 72| < b)dV, = / G T I (ay < || < by)dY,
0 0

n—1 1-1/n . .
_ / G I(ay < |J,] < by)dZ, = / G Iay < [7.] < by)dZ.,
0 0

where G} = @?/1 4+~ Using the dominated convergence theorem for stochastic integrals
(see [10; Ch. I, Theorem 4.40]), we get (4.2). -
Thus, J € L(Y), which means that there exists a decomposition ¥ = B + N

with B € VYF,), N € M{ (F,) such that J € Lyw(B) N Lj,(N). Then
J € Lyar, 0,00 (B) leloc,[O,oo)(M)’ where By = Byji4, Ny = Nyji. Consequently,
H e Lvar, [0,00)(A) N Llloc, [0700)(M), where
Ai:/ K'dB, MZ':/ K'dN'.
0 0
Since X = Xo+ A+ M, the proof is completed. O

Let us compare the notion of a stochastic integral up to infinity introduced above
with the notion of an improper stochastic integral introduced below.

Definition 4.3. Let X € S?. We will say that a process H is improperly X -
integrable if H € L(X) and there exists a limit

t

(a.s.) im | HydX;.

t—o0 0

This limit is called the improper stochastic integral fooo H,dX,. The space of improperly
X -integrable processes will be denoted by Ly, (X).
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By the definition, Lin,(X) € L(X). It follows from Theorem 4.2 and equal-
ity (4.1) that Ljgoe)(X) € Limp(X) and the two definitions of fooo H,dX, coincide
for H € Lip,«)(X). The following example shows that these two inclusions are strict.

Example 4.4. Let X, =t and Hy = h(t) be a measurable deterministic function.
Then

HeL(X) < hel,
H e Limp(X) <= he¢€ Limp7
H e L[O,oo) (X) <= he¢ L[U’OO),

where the classes L, Limp, and Ly o) are defined in (1.1)—(1.3).

Proof. The first two statements follow from Theorem 3.2. The third statement is
a consequence of Theorem 4.5. O

2. Predictable criterion for the integrability up to infinity. The following
statement provides a description of Ljg «)(X) that is “dual” to the description of L(X)
provided by Theorem 3.2. We use the notation from Subsection 3.2.

Theorem 4.5. Let H be a d-dimensional predictable process. Then H € Lig o0\ (X)
iof and only if

/ oo(H)F, < 00 as., (4.3)
0
where @(H) is given by (3.4).

Proposition 4.6. Let H € L(X). Then the characteristics (B,C,7) of Jo HodX,
with respect to the truncation function zI(|x| < 1) are given by

B [ (Hobot [ Heow(i(el > 1,8, 0] < 1)
0 R

(4.4)
— (2 <1, |H, - 2| > 1)) K, (dx) )dF.,

C = / H,-c,- H, dF,, (4.5)

Uw,dt, dz) = K (w, t,dz)dFy(w), (4.6)

where I?(w,t, dz) is the image of K(w,t,dx) under the map R > z + Hy(w) -z € R
and b, ¢, K, F satisfy (3.3).

For the proof, see [15; Lemma 3|.

Proof of Theorem 4.5. The “only if” part. The process Y = fo H,dX; is a
semimartingale up to infinity. Hence, the process

Y=Y - AVI(AY| > 1) (4.7)

5<-

is also a semimartingale up to infinity. Since Y has bounded jumps, it belongs to
Sp,0,00)» and therefore, its canonical decomposition Y = B + N satisfies B € Vg0,

N e Mloc, [0,00) -

14



The process B is given by (4.4). The inclusion B € V)o,00) Means that

/ \Hs-bs+/Hs-x(I(lxl > 1,|H, 2] < 1)
0 R

(4.8)
(| < 1.|H, - 2| > 1))Ks(dx)‘dF3 <o as.

The inclusion N € Mige,[0,00) implies that []V]oo < oo a.s. Therefore, (NC> < 0
a.s. (see [10; Ch. I, Theorem 4.52]). In view of (4.5), this means that

/ H,-c,-H,dF, < >0 a.s. (4.9)
0

We have
> (H,-AX,)?=> AY? <oo as.,

5>0 5>0

and using Lemma 3.4, we obtain
/ / 1A (Hy-2)*K,(dz)dF, < oo as. (4.10)
o Jr

Inequalities (4.8)—(4.10) taken together yield (4.3).
The ”if” part. It follows from Theorem 3.2 that H € L(X). Set Y = [, H,dX,

and define Y by (4.7). The process B in the canonical decomposition Y = B + N is
given by (4.4).

Condition (4.3) implies (4.8), which means that Be Vi0,00) -

Combining condition (4.3) with Lemma 3.4, we get

STAVE=N(H, - AXI(H,-AX| 1) <o as.

5>0 5>0
The inclusion B € Vjo,0c) implies that

Z IAB,| < 00 as.

5>0
Taking into account the equality AN = AY — AE, we get

ZANSQ < oo as.

5>0

Since |AN| < 2 (see [10; Ch. I, Lemma 4.24]), we have

N\ 12
(Z ANE) G AIOC, [0,00)'
s<-

In view of (4.5),
(N :/ H,-¢,-H,dF, < 0o as.
0
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Thus, []T/]l/2 € Aloc,[0,00)- By Lemma 2.5, N € Miee, [0,00) -

As a result, Y € Sj). Moreover, condition (4.3), together with Lemma 3.4,
implies that

Y I(AY > 1) =) I(|H,- AX,|>1) < oo as.

5>0 5>0
Hence, Y € S o). By Theorem 4.2, H € Ljg o0y(X). O
Corollary 4.7. Let X be a one-dimensional continuous semimartingale with the

canonical decomposition X = Xo+ A+ M. Then a predictable process H belongs to
Lio,00)(X) if and only if

/ \H,|d(Var A), + / H2A(M), < 00 as.
0 0

3. The application to Lévy processes. The following statement is “dual” to
Corollary 3.6.

Corollary 4.8. Let X be an a-stable (F;)-Lévy process with the Lévy measure

_(mul(z <0)  myl(z>0)
v(dz) = ( e + e dx.

Let H be a predictable process.
(i) Let a € (0,1) and X ~ (b,0,v)q. Then H € Ly o) (X) if and only if

|b|/ |Hs|ds+(m1+m2)/ |Hs|%ds < 00 a.s.
0 0

(ii) Let a =1 and X ~ (b,0,v), where h(zx) = zI(|x| < 1). Then H € Ligoo)(X)
iof and only if

(1] +mq + mg)/ |Hy|ds + |my — m2|/ |Hg|In |Hg|ds < 00 a.s.
0 0
iii) Let a € (1,2) and X ~ (b,0,v),. Then H € Ligo)(X) if and only 1
[0,00)
|b|/ |Hs|ds+(m1+m2)/ H,[%ds < 00 a.s.
0 0
(iv) Let « =2 and X ~ (b,¢,0). Then H € Ljg)(X) if and only if
|b|/ |Hs|ds+c/ Hlds < oo a.s.
0 0

The proof is similar to the proof of Corollary 3.6.

Corollary 4.9. Let X be a nondegenerate strictly o-stable (F;)-Lévy process.
Then a predictable process H belongs to Lo\ (X) if and only if

o
/ |Hy|%ds < 00 a.s.
0
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5 Application to Mathematical Finance

1. Fundamental Theorems of Asset Pricing. Let (€, F, ()0, P; (Xi)i>0) be a
model of a financial market. Here X is a multidimensional (F;)-semimartingale. From
the financial point of view, X is the discounted price process of several assets. Recall
that a strategy is a pair (z, H), where x € R and H € L(X). The discounted capital
of this strategy is x + [, HdX,.

The following notion was introduced by F. Delbaen and W. Schachermayer [4]. We
formulate it using the notion of an improper stochastic integral introduced above (see
Definition 4.3).

Definition 5.1. A sequence of strategies (z", H") realizes free lunch with vanishing
risk if

(i) for each n, 2™ = 0;

(ii) for each n, there exists a, € R such that fo H!dX, > a, as.;

(iii) for each n, H" € Limp(X);

(iv) for each n, [~ HPdX, > —1 as;

(v) there exists 6 > 0 such that, for each n, P([;° H'dX, > 6) > 4.

A model satisfies the no free lunch with vanishing risk condition if such a sequence
of strategies does not exist. Notation: (NFLVR) .

Recall that a one-dimensional process X is called a o-martingale if there exists a
sequence of predictable sets (D)) such that D, C D,.1, U, D, = Q@ x Ry and, for
any n, the process fo Ip,dX; is a uniformly integrable martingale. For more informa-
tion on o-martingales, see [3], [6], [7], [10; Ch. III, §6e], [14], [19]. A multidimensional
process X is called a o-martingale if each its component is a o-martingale. The space
of d-dimensional o-martingales is denoted by M.

Proposition 5.2 (First Fundamental Theorem of Asset Pricing). A model
satisfies the (NFLVR) condition if and only if there exists an equivalent o-martingale
measure, i.e. a measure Q ~ P such that X € ML(F;,Q).

This theorem was proved by F. Delbaen and W. Schachermayer [5] (compare with
Yu.M. Kabanov [11]).

Definition 5.3. A model is complete if for any bounded F-measurable function f,
there exists a strategy (z, H) such that

(i) there exist constants a, b such that a < fo H,dX, <b as,;

(ii) H € Lipmp(X);

(iii) f =2+ [;° HydX, as.

Proposition 5.4 (Second Fundamental Theorem of Asset Pricing). Sup-
pose that a model satisfies the (NFLVR) condition. Then it satisfies the completeness
condition if and only if the equivalent o-martingale measure is unique.

This statement follows from [5; Theorem 5.14]. It can also be derived from [1] or
[8; Théoreme 11.2]. An explicit proof of the Second Fundamental Theorem of Asset
Pricing in this form can be found in [19].
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2. Stochastic integrals up to infinity in the Fundamental Theorems of
Asset Pricing. If condition (iii) of Definition 5.1 and condition (ii) of Definition 5.3
are replaced by the conditions

(iii)’ for each n, H™ € Ljg)(X),

(i) H € Loy (X),
respectively, then new versions of the (NFLVR) and of the completeness are obtained.
We assert that the First and the Second Fundamental Theorems of Asset Pricing remain
valid with these new versions of the (NFLVR) and of the completeness.

Theorem 5.5. A model satisfies the (NFLVR) condition with the stochastic inte-
grals up to infinity if and only if there exists an equivalent o-martingale measure.

Theorem 5.6. Suppose that a model satisfies the (NFLVR) condition with the
stochastic integrals up to infinity. Then it satisfies the completeness condition with
the stochastic integrals up to infinity if and only if the equivalent o-martingale mea-
sure s unique.

Proof of Theorems 5.5, 5.6. It follows from Proposition 2.6 and Lemma 2.7
that there exist deterministic functions K',..., K% such that, for each i, K* > 0,
Kie L(Xl) and V' := fO(K;)fldX; € 8[0’00). Set

— Y, t<1, — F e, t<l1,
Yt: 1—t f‘t: 1—t
Yoo t21,

Then each of the following conditions
(NFLVR) with the stochastic integrals up to infinity;
existence of an equivalent o-martingale measure;
completeness with the stochastic integrals up to infinity;
uniqueness of an equivalent o-martingale measure

holds or does not hold for the following models simultaneously

(Q, F, (Fi)io, P; (Xt)t20)7
(. F, (Fizo, P; (V)iz0),
(2 F, (F)iz0, P; (V1)iz0)-

For the last of these models, the (NFLVR) and the completeness with the stochastic
integrals up to infinity are obviously equivalent to the (NFLVR) and the completeness
with the improper stochastic integrals. Now, the desired result follows from Proposi-
tions 5.2, 5.4. O

Remarks. (i) Theorem 5.5 shows that the existence of an equivalent o-martingale
measure can be guaranteed by the condition weaker than (NFLVR).

(ii) The (NFLVR) condition and the completeness condition with the stochastic
integrals up to infinity are more convenient than the original ones since we have a
predictable description for the integrability up to infinity, while there seems to be no
such a description for the improper integrability. O
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