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1 Introduction

Overview. Let Sl,...,S¢ be real numbers meaning the initial prices of several assets
and let Si,...,S¢ be random variables meaning their terminal discounted prices. In 1952

Markowitz [25] introduced the mean-variance optimization problem

EX — max,
X €A, (1.1)
Var X <cg,

where A = {3, h'(Si — S§) : h' € R} is the set of P&Ls (Profits and Losses) that can be
obtained by various trading strategies, ¢ is a risk constraint, and Var denotes variance.?

Although widely used and highly analytically tractable, variance has some deficien-
cies: it penalizes high profits in exactly the same way as high losses. In particular, the

quadratic risk of any position coincides with the risk of the opposite position, which is not
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deal with the equivalent formulation in terms of discounted P&Ls. Let us also remark that in the original

paper [25] Markowitz considered a model with no short sales, i.e. with h? > 0.



relevant unless the payoff is symmetric. In order to overcome this problem, Markowitz [26]
proposed semivariance Svar X = E((X — EX)7)? as a measure of risk. Although wiser
than variance, this risk measure is much less convenient analytically: if one considers
problem (1.1) with Var replaced by Svar, then one can prove the existence of a solution
(see the recent paper [23] by Jin, Markowitz, and Zhou), but no analytical solution is
available.

Another way for measuring risk smartly has recently been proposed by Artzner, Del-
baen, Eber, and Heath [3], [4]. They introduced the concept of a coherent risk measure.
Semivariance is in fact a particular representative of this class (to be more precise, the
functional —EX + aSvar X with a € [0,1] is a coherent risk measure; see [18]). But
semivariance is not the most convenient representative.

A basic coherent risk measure is Tail V@R (known also as the Average V@GR, Condi-
tional V@R, and Ezxpected Shortfall) defined as?

pA(X):_E(X|XSQ)\)7 A€ (0:1]:

where ¢, denotes the A-quantile of X (see [20; Sect. 4.4] for basic properties of py). A

more general class is Weighted V@R (known also as the spectral risk measure)
pu(X) = / pa(X)u(dX), pis a probability measure on (0, 1].
(0,1]

This class is convenient analytically (see [1], [10]). Let us also mention one more family
of coherent risks — MINV@R introduced in [14]: if one chooses p(dx) = cx(1 — z)N 2,
where N € N, then p, takes the form

pn(X) = —Emin{X,,..., Xy},

where X7,..., Xy are independent copies of X. Let us remark that the above mentioned
risk measure —EX + aSvar X does not belong to the Weighted V@R class, and, in our
opinion, this is the reason why it is not convenient analytically.

Thus, it is natural to consider the analog of (1.1)

EX — max,
X € A, (1.2)
p(X) <,

in which p is a coherent risk. This problem was studied in a number of papers. Rockafellar

and Uryasev [28] showed that, for the case of Tail V@R, this problem is equivalent to

3To be more precise, this representation is true only if X has a continuous distribution; otherwise,

the formula for py is slightly more complicated.



another one, which is much more convenient for numeric computations (see Acerbi and
Simonetti [2] for a generalization of this method to Weighted V@R). A solution of (1.2)

in geometric terms was proposed in [12].

Goal of the paper. In this paper we study the dynamic discrete-time analog of (1.2),

i.e. the problem, in which

N d
A= {Z Z H;(S:z - 2—1) : H,’l is fn_l—measurable}, (1.3)

n=1 =1

where S! means the discounted price of the i-th asset at time n; S is adapted to a
filtration (F,)n=o,..~-

If one takes p to be the same as above (Tail V@R, Weighted V@R, etc.), then the
resulting dynamic problem appears to be inconvenient: it might be possible to prove the
existence and the uniqueness of a solution (under some conditions), but there seems to be
no analytic solution even for basic models and no efficient numeric procedure for finding
a solution. The reason is that the corresponding problem is not dynamically consistent.

But along with static coherent risks, there exist dynamic coherent risks (their study is
one of the major topics in today’s research in the field of risk measures; see [5], [6], [8], [7],
9], [17], [19], [21], [22], [24], [27], [29], [31]). It turns out that if one plugs in (1.2)—(1.3)
a dynamic coherent risk, then the problem becomes dynamically consistent and admits a
nice solution. This is the topic of this paper.

The obtained optimal solution H* has two features that deserve to be mentioned.

e The larger the accumulated capital at time n is, the larger the position is to be
taken (i.e. H}). This is similar to what is done in practice, where the current
capital serves as a risk limit. However, H is not exactly a multiple of the current
wealth.

e There exists a stopping time 7 such that HY # 0 on {n < 7} and H} = 0 on
{n > 71} (we have P(1 < N) > 0 and P(7 = N) > 0). The time 7 occurs when a
big loss within one step happens. This is very similar to stop-loss limits imposed
in practice: if a trader’s portfolio suffers a big loss, the position is liquidated and

he/she is suspended from trading for some “cooling off” period.

Structure of the paper. In Section 2, we recall basic definitions and facts related
to discrete-time coherent risks.

In Section 3, we reduce (1.2)—(1.3) to a static optimization problem with a static risk
measure. The class of models we are considering is rather wide: in particular, it includes
the conditionally Gaussian models. The class of risk measures considered is the dynamic

Weighted V@R, which is a wide subclass of dynamic coherent risks.



In Section 4, we study the static problem, to which (1.2)—(1.3) is reduced. For the
case of a conditionally Gaussian model, we reduce the multidimensional problem to the
one-dimensional. For the latter one, we present an explicit solution.

Finally, in Section 5, we study the asymptotic behavior of the solution of (1.2)—(1.3)
as N — oo. This is motivated by the fact that in practice there exists no terminal date

for the optimization.

2 Coherent Risks

Static risks. Throughout the paper, it will be more convenient to deal not with coherent
risks but rather with their opposites — coherent utility functions (this enables one to get
rid of numerous minus signs). Let (£2,F,P) be a probability space. According to the
definition proposed in [3], [4], [16], a coherent utility is a map u : L™ — R satisfying
certain axioms. According to the representation theorem established in [4] for a finite
and in [16] for a general case (in this case an additional axiom called the Fatou property
is needed), a map u is a coherent utility if and only if it can be represented in the form
u(X) = inf EqQX (2.1)
QeD
with some set D of probability measures absolutely continuous with respect to P. From
the financial point of view, X is the P&L of some portfolio.

For financial applications one needs to extend coherent utilities to unbounded ran-
dom variables (indeed, most natural distributions like the normal one are unbounded).
This can be achieved simply by defining a coherent utility on the space L° of all random
variables as a map of the form (2.1), where D is a set of measures absolutely continu-
ous with respect to P and the expectation EqX is understood in the generalized sense:
EQX = EQX™ — EQX ™~ with the convention co — co = —co. (Throughout the paper, all
the expectations are understood in this way.) This way of defining coherent risks on L°
proved to be very convenient (see [11], [12]).

Throughout the paper, we identify probability measures that are absolutely continuous
with respect to P (these are typically denoted as Q) with their densities with respect to P
(these are typically denoted as Z); E without a subscript means the expectation with
respect to the original measure P.

A basic example of coherent risks is Tail V@R. This is a coherent utility wu, corre-
sponding to

D=Dy={Z:0<Z< X' EZ=1},

where A € (0,1]. If X has a continuous distribution, then

uy(X) = E(X | X < qn),
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where ¢, is a A-quantile of X .
Another basic example is Weighted V@R defined as

y(X) = /(0 [ Ou@, X e (2.2)

where p is a probability measure on (0,1] and the integral [ f(A)u(d)) is understood
as [ fr(A)pu(dX) — [ f~(N)u(d\) with the convention oo — oo = —oo. It can be checked

that u, is a coherent utility, i.e.

u,(X) = inf EqX, X €L’ (2.3)
QeD,
with
D=D,={7:Z>0,EZ=1,E(Z—2)" <®,(z)Vz € R, }, (2.4)
where
Y 1
®,(z) = sup [/ / M u(dNdz — xy|, z€R, (2.5)
yelo,1] LJo z

(see [10; Th. 4.6]).

Dynamic risks. As opposed to the static situation, in the dynamic case there is still
no complete unanimity about the right definition of a coherent risk (see the review and the
discussion in [13]). However, at least in the discrete-time case many researchers agree on
a single definition. It was proposed independently by Cheridito, Delbaen, and Kupper [7]
and Jobert, Rogers [24]. The corresponding representation theorem was established by
Cheridito and Kupper [9]. All these papers deal with bounded processes. In order to
extend dynamic coherent risks to the unbounded case, we proceed as in the static case:
the representation is taken as the definition of a coherent risk for unbounded processes.
Below we recall the corresponding definition taken from [13].

Let (Q,F,(Fu)n=0,..~,P) be a discrete-time filtered probability space.  Let
(Dp)n=1,..n be a system of sets of random variables with the properties:

e any random variable Z from D, is positive, F,-measurable, and satisfies the in-

equality E(Z|F, 1) < 1;

e D, is non-empty, L'-closed, uniformly integrable, and F,_; -convez, i.e. for any
Zy,Zy € D, and any [0,1]-valued F,_;-measurable random variable A, we have
M+ (1= )N)Zy € D,.

Let X = (X,)n=0,..~ be a one-dimensional (F,)-adapted process. From the financial
point of view, X describes the stream of cash flows of some portfolio, i.e. X, is the
discounted amount received at time n (for example, the stream of cash flows corresponding
to a strategy H in (1.3) is given by X,, = > H.(S: — S _,)). The coherent utility of X
is the [—o0, co]-valued process u(X) = (un(X))n=o,.,v defined as: un(X) =0,

Uup—1(X) = essinf E(Z(X,, + un (X)) | Fnz1), n=N,...,1, (2.6)

Z€Dy



where E(£|G) is understood as E(£7|G) — E(£7|G) with the convention oo — 0o = —00;
for a [0, oo]-valued random variable (, the conditional expectation E(C|G) is understood
as lim, E(( An|G). (Throughout the paper, all the conditional expectations are under-
stood in this way.) From the financial point of view, —u,(X) is the risk contained in
(Xns1,---,Xn) and measured at time n. Informally, (2.6) reads as follows: the risk of
the part of the stream remaining after time n — 1 is the risk of the cash flow received at
time n plus the risk of the part remaining after time n.

If additionally we assume that E(Z | F, 1) = 1 for every n and every Z € D,,
while X satisfies certain integrability conditions, then the coherent utility gets a simpler

representation:

N
un(X) = e%seigf Eq[ Z X

k=n+1

fn], n=0,...,N,

where D = {HTJLI Zy @ Zy € Dy} (see [13; Prop. 2.2]). However, it is important to
consider coherent risks, for which E(Z | F,_ 1) might be strictly smaller than 1. This
corresponds to the effect that might be called the discounting of risk: the risk of losses
in the far future is encountered with a smaller weight than the risk of losses in the near
future. As an example, let D,, be such that E(Z|F, 1) = « for any n and any Z € D,,,
where « € (0, 1]; consider X of the form X,, =0 for n < N and Xy = —1 (an obligation
to pay 1 unit of money at time N). Then ug(X) = —a®V, i.e. the risk of X at time 0
is o . Note that this has nothing to do with the ordinary discounting as X, are already
discounted values.

The natural dynamic analog of Tail V@R is obtained by taking
D, ={Z:Z is F,-measurable, 0 < Z < A, and E(Z|F, 1)=1}, n=1,...,N.

Using representation (2.3)—(2.5), we can also extend Weighted VQR to the dynamic

case by setting

D, ={Z : Z is F,-measurable, Z > 0, E(Z|F,_1) =1, 27)
and E((Z —2)*|Fq) < ®u(x)Vz €eRy}, n=1,...,N. '

Clearly, the sets D, satisfy the conditions imposed above. As shown in [13; Lem. 2.5]),

equality (2.6) is then rewritten as
Up—1(X) = u,(Law (X, + u, (X)) | Frzr)), (2.8)

where w, is a map defined on distributions such that u,(§) = u,(Law &) for any random
variable £ (such a map exists because u, and hence, u, depend only on the distribution

of a random variable). This shows the relevance of the given definition (2.7).
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Let us finally remark that the functional u, can be defined by (2.2) also for a positive
(not necessarily probabilistic) finite measure p on (0,1], and representation (2.3)—(2.5)
remains valid with the condition EZ =1 replaced by EZ = 1((0,1]). This enables us to
extend the dynamic Weighted V@R to measures p with u((0,1]) < 1 simply by replacing
in (2.7) the condition E(Z|F, 1) =1 by the condition E(Z|F, 1) = p((0,1]).

3 Dynamic Optimization Problem

Let (2, F,(Fn)n=o..n,P) be a filtered probability space. Let (S,)n—0..n be a

d-dimensional process of the form
Sn = S() + ZO’Z'XZ', (31)
i=1

where X, is a d-dimensional integrable J, -measurable random vector independent of
Fn_1, all X, are identically distributed, and o, is a non-degenerate F, ;-measurable
d x d-matrix. From the financial point of view, we have a market consisting of d traded
assets and S! is the discounted price of the i-th asset at time n. Note that any condi-
tionally Gaussian model belongs to this class (provided that the covariance matrices are
non-degenerate and integrable). In particular, multidimensional GARCH models (see, for
example, [15; § 3.4]) are of this form.

Let p be a positive measure on (0, 1] with p((0,1]) <1 and u((0,1)) > 0. Let (u,)2_,
be the corresponding dynamic Weighted V@QR. We assume that EX,, £ 0 and

—00 < u,((h, X)) <0 Vhe R\ {0}, (3.2)

where u, is given by (2.2) and (-, -) denotes the scalar product. The first condition
means that there exists a trade with strictly positive reward; the second one means that
any simple trade has finite strictly positive risk.

Let A denote the space of d-dimensional predictable processes. From the financial
point of view, a process H € A is a dynamic trading strategy, i.e. H! is the position in
the i-th asset taken at time n—1, so that the corresponding discounted cash flow received
at time n is Y, HLAS!, = (H,,AS,), where AS,, =S, — S,_1. Let o € (0,1] be the
coefficient meaning the time value of money, i.e. the value at time 0 of an amount z
received at time n is o™x. This is not the discounting because x is already a discounted
amount, but rather the expression of the fact that getting something today is better than

getting it 10 years later.



We will consider the problem

EZ@ (H,, AS,) — max,

N\

He A (3.3)

Luo((H, AS)) > —

where (H,AS) = ((Hn,ASy))n=1,...n is the stream of cash flows corresponding to a
strategy H and c is a strictly positive constant.

In order to describe the optimal solution, we introduce some notation. Consider the set
H={hecR:: u,((h, X)) > —1},

where X is a random vector that coincides in distribution with all X,, (# is defined
correctly because u,(£) depends only on the distribution of £). Due to (3.2), H is a

convex compact. Denote
a(h) = inf{z € R:u,((h,X) Az) > -1}, heH, (3.4)

where inf@) = +oo (thus, —u((0,1])7" < a(h) < oc)). Construct numbers (R ),—o._..n
and vectors (h))n=o,..~—1 going backwards from N to 0 by: Ry =0,

Ry _, = r}{le%iaEKh,X) + R;((h, X) —a(h)*], n=N,...,1, (3.5)
hy | = ari%rr;aXE[(h, X)+ R;((h,X) —a(h))T], n=N,... 1 (3.6)

Note that R, is finite and hj, exists due to the compactness of H. Construct a
d-dimensional predictable process H* and a one-dimensional adapted process C* going

forwards from 0 to N by: Cj =c,

:C’:L—l( ) lh; 15 n:]_,...,N,

Cr=C: ((h [, X,)—ahi )Y, n=1,....N

°) Y

t

where o,

is the transpose of o, .

Theorem 3.1. The optimal value in (3.3) equals Ric, and H* is an optimal strategy.

If moreover each h; is unique, then the optimal strategy is unique.

To illustrate the optimal solution we have described, consider the following example.
Let N=2,d=1,¢c=1,0=1, a =1, and Fy be trivial. We assume that EX,, > 0.

Then, for any Fj-measurable random variable Hy, we have

E(H2X2 |f1) - HQEXQ,
ul(HX) = HQUM(XQ).



Thus,
E(H2X2 |f1) = —R’{ul(HX) = _RIHQUIL(XQ),

where R} = —EX5/u,(X,) (clearly, it coincides with the value given by (3.5)). Further-
more, for a fixed H; = h € R,

Denote hX; by ¢ and hX; 4+ u;(HX) by n. Then

while the condition ug(HX) > —1 becomes u,(n) > —1. So, for a fixed H;, the choice
of the optimal H, is the problem

En — min,
n<G,
uu(n) > —1

(note that u;(HX) < 0 due to assumption (3.2)). If u,(¢) < —1, then there exists no
solution; if u,({) > —1, then, as shown by Lemma 3.2 below, the solution of this problem
has the form 7* = ( Aa, where a is a constant such that u,(( Aa) = —1. Thus, a = a(h)
in our notation. We see that, under a fixed H; = h, the optimal H, is given by the
equation

—Hju,(Xo) = ¢ —n" = (hXi —a(h))".

Then
E(H, X, + H;X5) = E(hX, — R{Hju, (X)) = E(hX, + R (hX, — a(h))™).
The optimal H7j is found as the solution of the problem
E(hX, + R;(hX; — a(h))T) — max,

where h runs through {h : u,(hX;) > —1} = H. The optimal value in this problem
is R§ and the optimal A is h}. Finally, the optimal value in the original problem (3.3)
is Rf, and the optimal strategy is given by H;y = h%, Hy = —(u,(Xs)) t(h§ X1 —a(hi))*.
This coincides with the optimal solution described above, as in our example Cj = 1,
Cr = (hiXy — a(hy))™, and hi = —(uu(X3))™'. It is seen that the process C* has the
meaning of risk allowed to be taken in the future, i.e. C} is the risk allowed to be taken

after time n.
Remark. Consider the stopping time
r=inf{n:(h: |, X,) <a(h; |}
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Then H: #0 on {n <7} and H: =0 on {n > 7}. Thus, the optimal strategy has the

property: trading is switched off after a big loss has occurred.
The proof of Theorem 3.1 is broken into a series of lemmas.

Lemma 3.2. Let ¢ > 0 and ¢ be an integrable random variable with wu,(¢) > —c.
Denote a = inf{x € R: u,(( Ax) > —c} and n* = (ANa. Then, for any n < ¢ such that

uu(n) > —c, we have En > En*. Moreover, n* is the unique random variable with this

property.

Proof. We can assume that the probability space is atomless (if not, we extend it to
an atomless space).

Step 1. Suppose that there exists n such that n < (, u,(n) > —¢, and En < En*.
Then, for any integrable random variable £ and any A € (0, 1], there exists a set D with
P(D) = A such that u,(&) = E(§| D) (to construct it, take a A-quantile ¢ of £ and set
D ={¢£ < q}UD, where D C {£ = ¢} and P(D) = A—P(£ < ¢)). Note also that, for any
integrable random variable ¢ and any set D’ with P(D’) = A, we have u,(§) < E(¢|D’).
Denote A ={( < a} and s =sup{x: x € supp u}, where “supp” denotes the support.

Case 1. Suppose that P(A) = 1. This implies that u,(() = —c and s = 1 since
otherwise we can take ¢’ < a such that w,(( Aa’) > —c. We can find b < a such
that P(B) < 1 and P(BNn{n < ¢}) > 0, where B = {¢( < b}. Fix A € (P(B),1] and
find a set D with P(D) = X such that u,(¢{) = E(C | D). Clearly, D O B. Hence,
ux(n) < E(n| D) < E(C| D) = ux(¢). As this is true for any A\ € (P(B),1] and
u((P(B),1]) > 0 (this follows from the equality s = 1), while uy(n) < u,(¢) for any A,
we get u,(n) < u,(() = —c, which is a contradiction.

Case 2. Suppose that P(A) < 1. Set n = E(n|G(A°)), where G(A®) is the largest
sub-o-field of F containing A° as an atom. It is easy to see that uy(n) < ux(n) for any
A € (0,1], so that w,(n) < wu,(m).

Let 75 be the random variable that is equal to 7 on A and equals a constant on A€,
where the constant is chosen in such a way that En, = En*. Then 7, < 1, so that
u(mh) < uu(ire).-

Take A € (0,P(A)] and find a set D with P(D) = A such that
ux(n*) = E(p* | D). Clearlyy, D C A. Hence, 7o = n < ¢ = n* on D, so that
ux(n2) < E(m| D) < E(*| D) = ux(n").

Take now A € (P(A), 1] and find aset D with P(D) = A such that uy(n*) = E(n*| D).
Clearly, D O A. Note that 7o < n* on A, 75 > n* on A°, and En, = En*. Hence,
ux(n2) < E(me|D) < E(n*|D) = ux(n*). As a result, u,(n2) < u,(n*).

Case 2.1. Suppose that s > P(A). Take A € (P(A), 1] and find aset D with P(D) = A
such that uy(n2) = E(n2| D). As gy =mn =mn on A and n; < 19 on A° (this follows from
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the inequality En < En*), we have uy(m) < E(n | D) < E(n2| D) = ux(12). As this is true
for any A € (P(A),1] and p((P(A),1]) > 0 (this follows from the inequality s > P(A)),
while uy(n;) < ux(n) for any A, we get u, (1) < u,(n2).

Case 2.2. Suppose that s < P(A). Then s = P(A) since otherwise we can find
a' < a such that w,(( Aa’) > —c. We can find b < a such that P(B) < P(A) and
P(BN{n < (}) >0, where B = {( < b}. As o = n and n* = ( on A, we have
P(BN{n <n*})>0. Fix A € (P(B),P(A4)] and find a set D with P(D) = A such that
ux(n*) = E(n* | D). Clearly, D O B. Hence, uy(n2) < E(ne | D) < E(n*| D) = ux(n*).
As this is true for any A € (P(B),P(A)] and p((P(B),P(A)]) > 0 (this follows from the
equality s = P(A)), while uy(n2) < ux(n*) for any A, we get wu,(n2) < u,(n*).

As a result, in both cases 2.1 and 2.2 we get u,(n) < u,(n*) = —c, which is a
contradiction.

Step 2. Let us prove the uniqueness part. Suppose that there exists n < ( such that

u,(n) > —c, En = En*, and n # n*. For the measure g1 = and the constant

Floa
¢ =cp((0,1))/u((0,1]), we have uz(n) = up(n*) = —¢, so we can aésiu)me from the outset
that x({1}) = 0. Let A and s be the same as above.

Case 1. Suppose that P(A) = 1. This means that n* = (. But then the inequality
7 < ¢ and the equality En = En* imply that n = n*, which is a contradiction.

Case 2. Suppose that P(A) < 1. In this case a < oo and s > P(A) since otherwise
we can take a’ < a such that u,(( Ad') > —c.

Case 2.1. Suppose that P(AN{n < (}) > 0. We can find b < a such that P(B) < P(A)
and P(BN{n < (}) >0, where B = {( < b}.

Take A € (0,P(B)] and find a set D with P(D) = A such that u,(n*) = E(n*| D).
Clearly, D C B. Hence, n < ( =n* on D, so that u,(n) < E(n|D) < E(n*| D) = ux(n*).

Take A € (P(B),P(A)] and find a set D with P(D) = X such that uy,(n*) = E(n*| D).
Clearly, B C D C A, so that uy(n) < E(n|D) < E(n*| D) = ux(n*).

Take A € (P(A),1). Since n < n* on A, P(A°n{n > n*}) >0, and En = En*, we can
find a set D such that P(D) =\, D D A, and E(n|D) < E(n*|D). As n* <a on A and
n* =a on A°, we have uy(n*) = E(n*| D). Thus, uy(n) < E(n|D) < E(n*|D) = ux(n*).

As a result, uy(n) < wuy(n*) for any A € (P(B),1). As u(P(B),1) > 0 (this
follows from the inequality s > P(A)), while uy(n) < wux(n*) for any A, we get
uu(n) < wu(n*) = —c, which is a contradiction.

Case 2.2. Suppose that n = on A. Then P(A°N{n < a}) > 0. We can find b < a
such that P(B) < P(A) and P(A°N{n < b}) > 0, where B = {( < b}.

For any A € (0,P(B)), we have u(n) < ux(n*), which is proved in the same way as

above.
Take A € (P(B),P(A)] and find a set D with P(D) = A such that uy,(n*) = E(n*| D).
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Clearly, BC D C A and P(D\ B) > 0. We can find a set D' with P(D’) = P(D) that
is obtained from D by removing a subset of D\ B and adding a subset of AN {n < b}.
Asn=(=mn">bon D\ B, we get E(n| D) < E(n| D) = E(y* | D). Hence,
ux(n) < E(n|D") <Em*|D) = ur(n").

Take A € (P(A4),1). As n = n* on A and En = En*, we have
E(n| A°) = E(n* | A°) = E(a | A°). Moreover, P(A°N {n # a}) > 0, so that we can
find a set D with P(D) = X such that D O A and E(n|D N A°) < E(n*| DN A¢). Then
ux(n) < E(n[D) <E(n*|D) = ux(n").

As a result, wuy(n) < wup(n*) for any A € (P(B),1). As p(P(B),1) > 0 (this

s > P(A)), while uy(n) < wuy(n*) for any A\, we get

uu(n) < u,(n*) = —c, which is a contradiction. O

follows from the inequality

Below we denote by X the process (X,)"_,; by (H,X) we denote the process

((Hn, Xn))ns
Lemma 3.3. For any H € A, we have
u,((H, X)) <0, n=0,...,N.

Proof. We prove the statement going backwards from N to 0. For n = N, it is trivial.
Suppose the statement is true for n, and let us prove it for n — 1. It follows from (2.8)

that, for a.e. w,

un—1((H, X))(w) < essinf E(Z(H,, X,) | Fn_1)(w) = u,({h, X)),

Z€Dy

where h = H,(w) and X is a random vector having the same distribution as all X,.

Now, assumption (3.2) ensures that u,_1({(H, X)) < 0. O
Lemma 3.4. For any random variable & and o-fields Gi C G, we have
E(E(£]G2)1G1) = E(£]9),
where the conditional expectation is understood in the generalized sense.
Proof. Denote E(£|G2)t by ¢ and E(£]|Gs)™ by 7. Then

E(E(]G2)|G1) =E(C —nlGi) > E(C|G1) —E(n]G1) =E(7]G1) —E( |G1) = E(£]G).

The inequality above is proved as follows: on the set {E(n| Gi) = oc} it is trivial as
its right-hand side is —oo; the set {E(n|Gi) < oo} is represented as the union of sets
{E(n|G1) < n}, on each of which the inequality becomes the equality. O
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Lemma 3.5. For any H € A, we have

N

E[ > oF T H, Xy)

k=n-+1

fn} < —Riu,((H,X)), n=0,...,N.

Proof. We will prove the statement going backwards from N to 0. For n = N, it

is trivial. Suppose it is true for n, and let us prove it for n — 1. In view of (2.8), the

equality
un-1((H, X)) = essinf Eq((Hn, Xn) + un({H, X)) | Frn1)
means that, for a.e. w,
v = u((h, ) + 7). (3.7

where v = u, 1((H,X))(w), h = H,(w), and (X,V) is a random vector with
Law(X, V) = Law(X,, u,((H, X)) | Fo_1)(w) (it is not important on which space (X, V)
is defined as u, (&) depends only on the distribution of ¢). As X, is independent of F,,_1,
we have Law X = Law X,,. Let us prove that

aE((h, X) — R:V) < —R*_,v. (3.8)

If v = —o0, then (3.8) is trivial. If v = 0, then, using equality (3.7), assumption (3.2),
and Lemma 3.3, we deduce that A = 0 and V = 0, in which case (3.8) is again trivial.
Now, let —oo < v < 0. Denote o = h/[v] and V = V/[v|. Then V < 0 due to Lemma 3.3
and u,((h, X)+V) = —1 due to (3.7). It follows from Lemma 3.2 applied to X = (h, X)
and Y = (h, X) + V that

—EV <E(X —Y) <E(X — X Aa(h)) = E(X —a(h)",

so that
aE((h, X) — R} V) < aE((h, X) — R;((h, X) —a(h))") < R}, ,

Thus, (3.8) is proved. Then we can write

N
E[Zak_"+1(Hk,Xk> fn—l
k=n
- N
= E(a(Hy, Xp) | Fact) +0E| D o (H, Xp) .7:"_1}
“k=n-+1

< E(a{Hy, Xp) | Fre1) + aE [Z oF " Hy, X5
k=n+1

d

- e
< E(a(Hy, Xo) [ Fo1) + aE(=Ryu, ((H, X)) | F1)

= aE((Hy, Xn) — Ryun((H, X)) | Fn-1)

< =Ry _yun—1((H, X)).
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Both equalities here follow from the integrability of X,, and the independence of X,, from
Fn_1; the first inequality follows from Lemma 3.4; the second inequality follows from the

induction assumption; the third inequality follows from (3.8). O
Lemma 3.6. For any n, C; 1is integrable.

Proof. The statement is proved going forwards from 0 to N with the help of the

equality
EC;, =EC;, (E((h;,_1, X») —a(h;, 1)),
which follows from the independence of X,, and F,_;. O

Lemma 3.7. We have

up((H*,AS)) > —-C;, n=0,...,N,
N

E[ > o (H ASy)

k=n-+1

n=n?

fn] R:CE, n=0,...,N.

Proof. We prove the first statement going backwards from 0 to N. For n = N, it is

trivial. Suppose it is true for n — 1, and let us prove it for n. We have

un—1((H", X)) = essinf Eq((Hy, Xn) + un((H", X)) | Fu-1)

> essinf Eq(Cr:_(h:_1, Xn) — Ck | Fnzi)

QEDy

= iy essipt Eq((h 1, Xo) A a(ls_) | o)

= Cp_yup((Pyy, Xn) Aalhy,_y))

=—Ch
The inequality follows from the induction assumption; the third equality follows
from (2.8).

Now, let us prove the second statement going backwards from N to 0. For n = N, it

is trivial. Suppose it is true for n, and let us prove it for n — 1. We have
|:Z CYk —n+1 H* > n—1:|
N

=aE(C;_(h;_,, n>|.7-"n1)—|—aE[ Z "M HE,X,)

k=n-+1

.

= aE(C'* <h; 1 n> |-7:n—1) + aE(R;Cm}—n—l)

= aCyy E((hy 1, Xn) + Ry (Chy, 1, Xn) — alhy, )" | Faor)
= aCy _E((hy_1, Xp) + Ry, ((hyoyy X)) — alhy, 1))
=R, ,C,_,

In the second equality we used the induction assumption and Lemma 3.6. O
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Lemma 3.8. Suppose that each h} is unique. Let H be a predictable d-dimensional

process such that

EZa H,,AS,) = Ric,
uo((H,AS)) > —
Then H = H* a.s.
Proof. Fix n € {1,..., N}. It follows from (3.8) that
aB((Hy, Xn) — Bpun((H, X)) [ Fo1) < =Ry, yun 1 ((H, X)).

If this inequality is strict with a strictly positive probability, then, going backwards from n
to 0 and using (3.9), we see that, for m =n —1,...,0, the inequality

{Z o™ (Hy, X

k=m+1

is strict with a strictly positive probability. For m = 0, we obtain a contradiction. Thus,
QE((H, X, = Rytin(H, X)) | Fat) = R yuin-1((H, X)).

If P(u, 1((H,X)) = 00) > 0, then, going backwards from n — 1 to 0, we check that
P(um((H,X)) =00) >0 for m =n—1,...,0. For m = 0, we obtain a contradiction.
Thus, u,_1((H,X)) < oo. Combining this with the preceding conclusion, we get, for
a.e. w,

aE((h,X) — R:V) = —R%_,v < o0, (3.10)

where v, h, )N(, and V are the same as in the proof of Lemma 3.5.

Let us prove that

h = |v|h, (3.11)
V =w((h:, V) —a(hi))t ifn < N. (3.12)

If v =0, then it follows from equality (3.7), assumption (3.2), and Lemma 3.3 that h = 0
and V = 0, so that (3.11) and (3.12) are trivially satisfied. Let now v < 0. Denote
h=h/ly|, V.=V/]y|. Then V < 0 due to Lemma 3.3 and u#((ﬁ,)NQ +V) = —1 due
0 (3.7). It follows from Lemma 3.2 applied to X = (h, X) and Y = (h, X) + V that

R: = aE((h, X) — R V) < aE((h, X) + R:((h, X) — a(h)*) < R*

n—1

where the equality follows from (3.10). Both inequalities here should be equalities. As
h: is unique, we have h = h’, which proves (3.11). If n < N, then R: > 0, so

n
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that EV = —E((h, X) — a(h))* and, due to Lemma 3.2, V = —((h, X) — a(h))". This
proves (3.12).
Thus, (3.11)—(3.12) are true for a.e. w. This means that
Hy,=—un((H,X))h, m=1,... N,
U ((H, X)) = w1 ((H, X)) (R, X)) —a(hi)T, m=1,...,N—1.

Clearly, wuo((H,X)) = —c since otherwise we can consider the process
H' =2H N He/uo((H, X)), for which ug((H', X)) > —c and

N N
E) ofH' X)>E) of(H X) =R
k=1 k=1
which contradicts Lemma 3.5. Recalling the definition of H*, we see that H = H*. O

Proof of Theorem 3.1. Note that, for any H € A, (H,,AS,) = (H), X,), where
H! = ol H,. Now, the fact that Rjc is the optimal value and H* is an optimal strategy

follows from Lemmas 3.5 and 3.7. The uniqueness part follows from Lemma 3.8. O

4 Static Optimization Problem

Multidimensional case. The results of the previous section reduce the original dynamic

problem (3.3) to the static one

E[(h, X)+ R((h, X) — a)T] — max,
heR:, acR, (4.1)
uu((h, X) Na) > —1,
where X is a d-dimensional random vector, R € R, , p is a positive measure on (0, 1]
with £((0,1]) <1, p((0,1)) > 0, and u,, is given by (2.2). Indeed, it is clear that, for
the optimal solution (h*,a*) of (4.1), we have a* = a(h*), where a(h) is defined by (3.4).
Assumption (3.2) is transformed into: —oo < u,((h, X)) < 0 for any h € R?\ {0}.
Note that (4.1) is not a concave maximization problem because the map
(hya) — E[{h, X) + R({h, X) — a)™] is convex.
A particularly important case of (3.1) is that of a conditionally Gaussian model, which
corresponds to the case, when X is Gaussian. So, let us assume that X is Gaussian with
mean m # 0 and a non-degenerate covariance matrix C'. The theorem below shows that

then (4.1) is equivalent to the one-dimensional problem
E[9(C'm, X) + R(¢(C*'m, X) — a)"] — max,
geER,, a€eR, (4.2)
u,(g(C'm, X) Na) > —1.
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Theorem 4.1. A pair (h,a) is a solution of (4.1) if and only if h = gC~'m, where
(g,a) is a solution of (4.2).

Proof. Denote hy = C'm. We have

E(h, X) (C'V2]h, C~12m)
argmax — argmax

nerayqoy (Var(h, X))V2 i cgay oy (C/2h, CH2R)1?

= {gho : g € (0,00)}.
Consequently, for any h ¢ {gC~'m : g € (0,00)}, h # 0, we have
Law(h, X') = Law(y(ho, X) — )

with some v > 0, § > 0. This implies that

max{E[g(h, X) + R(g(h,X) —a)"] : g € Ry, a € R, u,(g(h, X) Aa) > —1}

= E[g"(h, X) + R(g"(h, X) — a*)"]

< E[g"y(ho. X) + R(g"y(ho, X) — a”)"]

< max{E[g(ho, X) + R(g(ho, X) —a)"] : g € Ry, a € R, u,(g(ho, X) Na) > —1}.

The second inequality here follows from the line
wu (g™ y(ho, X) Na*) > u,(g*(h, X) Na®) > —1.
This yields the desired statement. a

Remarks. (i) In the non-Gaussian case one can approach (4.1) numerically. For this,
an efficient procedure for calculating u,, is needed. One of equivalent representations of u,,

(see [20; Th. 4.64]), which is more convenient for numerical calculations than (2.2), is

1, (€) = / 2d,, (F(2)),

:// A" p(dN)dy
0 Jy1]

and F; is the distribution function of &.

where

(i) If =0y i.e. u, is Tail V@R, then the numerical procedure for solving (4.1) can
further be simplified by the use of the method proposed by Rockafellar and Uryasev [28].
First, note that (4.1) is equivalent to the problem

u,((h, X) N a) — max,
heR!, acR, (4.3)
E[(h, X)+ R((h, X) —a)T] = 1.
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According to the Rockafellar-Uryasev result, this problem is, in turn, equivalent to

q—AN"'E(q — (h,X) Aa)" — max,
¢g€ER heR!, a€eR, (4.4)
E[(h, X) + R((h, X) — a)*] =1

in the sense that (h,a) is a solution of (4.3) if and only if there exists ¢ such that (g, h, a)

is a solution of (4.4). The advantage of (4.4) is that it does not contain expressions like wuy

but only has standard operations like taking the positive part.

One-dimensional case. Let us consider the one-dimensional version of (4.1). We

assume that EX > 0.
Lemma 4.2. For d =1, problem (4.1) is equivalent to

E[hX + R(hX — a)*] — max,
h € (0,00), a € R, (4.5)

u(hX Na) > —1
in the sense that h > 0 for any solution (h,a) of (4.1).
Proof. For any h < 0 and a € R such that u,(hX Aa) > —1, we have

E[hX + R(hX — a)*] < RE(hX —a)t < —RE(hX Aa)
< —Ruy(hX A a)/u,((0,1]) < R/pu((0,1]).

The third inequality follows from the property E{ > w,(£)/p((0,1]), which is easily
derived from the definition of u,.
For h =0 and a = —p((0,1])"!, we have E[hX + R(hX —a)"] = R/u((0,1]).

Furthermore,

0
a7 E[hX + R(hX —a)t] >0
oh ‘ho,aﬂ((o’l})—l [nX + R( a)”] 5

0
a7 hX ANa) =0.
oh ‘ho,aﬂ((o’l})—lu#( a)

Hence,
sup{E[AX + R(X —a)"] : h € (0,00), u,(hX Aa) > =1} > R/u((0,1]).
This completes the proof. O

Let us now study problem (4.5). Clearly, it is equivalent to the problem

ELX + R(X — b)]
—u, (X A D)

—max, beR (4.6)
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in the sense that if b* is a solution of (4.6), then h* = —u,(X Ab*)~!, a* = h*b* is a
solution of (4.5); if (h*,a*) is a solution of (4.5), then b* = a*/h* is a solution of (4.6).
Let us assume that X has a density that is strictly positive inside some interval and is
zero outside this interval.

First consider the case R = 0. Then it is clear that the solution of (4.5) has the form
b =inf{z e R:u, (X Azx) =u,(X)} =g,

where s = sup{z : x € supp 1} and ¢, denotes the A-quantile of X . So, in this case the
optimal value in (4.6), which coincides with the optimal value in (4.5), is —EX/u,(X).
When constructing R} through (3.5), we need to solve (4.6) iteratively, at each step
plugging in as R the optimal value obtained at the previous step. As we have already
described the solution for R = 0 (which is the starting value in the iterative procedure),
we can now assume that R > —EX/u,(X) (this assumption is needed in Theorem 4.3
below).

Introduce the notation
x 1
W)= [ [ A udndy, e
0 Jy

and let D denote the distribution function of X. Denote r = sup{z : = € supp Law X}
and consider the function

1 -0, (D))

D) x € (—oo,1). (4.7)

Gb) = R/(x/\b) d(V,0D)(z)+ [EX + RE(X —b)"]

Theorem 4.3. The function G is decreasing, and there ezists a number b* € (—oo, 1)
such that G > 0 on (—o0,b*), G(b*) =0, and G < 0 on (b*,r). The value b* is the

unique optimal solution of (4.6).

Example 4.4. (i) Tail VQR. Let X be normal with mean m and variance o?; let
p =8y, i.e. the risk measure is the dynamic Tail V@QR. Then ¥, = (A\7'z) A 1 and

R qx (z—m)2
G(b) = / Tz Ab)e 2?2 dx
0 =5 | @rD

R L

where @ is the cumulative distribution function of the standard normal distribution and

¢x denotes the A-quantile of X.
(ii) Wang transform. Let X be the same as above and consider the case when
U, (x) = V(z) = ®(P *(z)+0), where P is the distribution function of the standard nor-

mal distribution and 6 > 0. The function VU is a concave increasing function [0, 1] — [0, 1],
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and the corresponding measure p is given by p(dx) = x¥”(x)dx. This concave distortion

was introduced by Wang [30]. We have

woD(x) = (07 (o)) +0) =o(F T4 0) = @(w),

o o g

i.e. Yo D is the distribution function of a Gaussian random variable with mean m — o6

and variance o2. Then

Gb) = R/R(:r Ab) q(z) da + (m + R/R(x —b)"p(@) dx) %

= Rm — Rof — %GXP{_W} — (m—ob— b)(@(m%g_b)

~ exp{ -2 b)Q} + R(m — )& (" b)) (=)

207 o)) ety

+< L A
m

V2T
where P is the normal distribution with mean m and variance o2, ) is the normal

distribution with mean m — o and variance o2, p is the density of P, and ¢ is the

density of Q.
Lemma 4.5. We have

lim G(b) = (14 R)EX,

b——o0

G (o) = R /R (0, 0 D)(x) + p({1})EX.

Furthermore, G is decreasing on (—oc,r) and is strictly decreasing on
{fl? : G(.ZU) > limbTr G(b)}

Proof. For \ € (0,1], denote ¥)(z) = (A\™'z) A1 (note that this is the function ¥,
corresponding to = dy). Then

and hence,
G(b) = GA(b)u(dA), b€ (—o0,7),

(0,1]
where G, is defined by (4.7) with U, replaced by W,. Therefore, it is sufficient to prove
the lemma for the case, when y = §,. In this case G takes the form

P(X >b|X < q))
P(X > b) ’

G(b) = RE(X Ab|X < q\) + [EX + RE(X — b)7]

where ¢, is the A-quantile of X .
For A = 1, the statement is trivial. Let now A € (0,1). The expressions for the

limits of G,(b) are clear (to prove the first of them, take into account the property
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limy, o bP(X < b) = 0, which follows from the integrability of X ), and we should only
check the monotonicity properties. The right-hand derivative of G exists a.e. with

respect to the Lebesgue measure on (—oo, 7). A direct calculation shows that
(GA)'4(0) = —(EX + RE(X = 0)")p(0)P(X > g)A™ (P(X > 6))7 <0, b€ (—00,qn),

where p is the density of the distribution of X . Clearly, G is constant on [gy,r). This

yields the desired monotonicity. O

Proof of Theorem 4.3. We have (see [20; Th. 4.64])

ug(X A B) = /R (x AB)d(T, 0 D)(2) (4.8)
and so, for the function
. EX+RE(X -b)*  EX+RE(X —b)*
FO ==X rp  ~ Lerpdw, D)@ °F

we have

b)P(X > b
(Ja(z A D) (T, 0 D)(x))
According to Lemma 4.5 and the assumption R > —EX/u,(X), we have

beR

279

lim G(b) = (14 R)EX >0,

b——oc

1 G (1) = R/ (T, 0 D)(x) + p({1HEX < —EX + p({1})EX < 0.

Obviously, G is continuous. Due to Lemma 4.5, there exists a unique root b* € (—oc,r)
of the equation G(b) = 0 and G > 0 on (—00,b*), G < 0 on (b*,r). Thus, b* is the

unique optimal value in (4.6). O

5 Asymptotic Behavior

Let X be a random variable such that EX > 0, —oo < w,(X) < 0, X has a density
that is strictly positive inside some interval and is zero outside this interval. Define the
sequences (R,) and (hy) by: Ry =0,

R, = rf?a%aE[hX + R, 1(hX —a(h))t], n=1,2,...,
€

h, = argmaxE[hX + R,_1(hX —a(h))*], n=1,2,....
her

Note that the values R; of Section 3 are related to R, by the equality R, = Ry_,.
Denote a,, = a(h,), where a(h) is defined by (3.4). We will now study the asymptotic

behavior of R, , h,, and a, as n — oco. This corresponds to letting N — oo in (3.3).
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Introduce the notation

o(R) = max aE[hX + R(hX —a(h))'], ReR,

and let 5 be the optimal value in the problem

E(hX — a)" — max,
h€(0,00), a€R, (5.1)
u,(hX Na) > —1.

Obviously, this problem is equivalent to

E(X —b)*

FR Y max, beR
“u (X AD)

The same arguments as those in the previous section show that the solution b* of the

latter problem is the unique root of the equation

/R(x AB)d(T, 0 D)(z) + 1_1%”—1(31()5()6)) /R(z _b)*dD(z) =0, b€ (—oo,r),

where ¥, and r were introduced in the previous section. Thus, the solution (h*,a*)
of (5.1) has the form h* = —u, (X Ab*)™!, a* = h*b*.

Theorem 5.1. (i) The values R,, are increasing in n. The values h,, are determined
uniquely and are decreasing in n. The values a, are decreasing in n.

(ii) If B < 1, then Ry = lim, R, is finite and is the unique root of the equation
©(R) = R. Furthermore, the pair (heo, o) = limy(hy,,a,) is the unique solution of
problem (4.5) with R = R,.

(iii) If 8 > 1, then lim, R, = co. Furthermore, the pair (hso, o) = limy, (hy,,ay) is
the unique solution of problem (5.1).

Proof. (i) The property that R, increase in n is clear. Note that Ry = —EX/u,(X).
According to Theorem 4.3, the value

ELX + R(X — b)*]
b(R) = argmax ,
() = argm —u, (X A D)

R e [-EX/u,(X), o0)

is the unique root of the equation G(R,b) = 0, where G(R,b) is the function defined in
Theorem 4.3. We have

%G(R, b) = /R(z A D) d(W, 0 D)(x) + E(X — b)

+ 1= ,(D(b))
1- D(b)
1—0,(D(b))

— —1 - flEX
R'G(R,b) — R D)
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For b = b(R), this partial derivative is strictly negative. As G is decreasing in R, we see
that b(R) is decreasing in R.
In view of (4.8), we have for h > 0,

%uu(h){ Aa) = % /R(hz A a)d(W, o D)(x) = /sz(x < a/h)d(T, o D)(x) < 0,

gu#(hX Aa) = 9 / I(z >a/h)d(¥,0D)(x) =1—-V,(D(a/h)) > 0.

aa aa R

At each point (h,a) at least one of these inequalities is strict. Therefore, the function
a(h) is increasing on R, .

For any hy, hy,ay, ay, such that u,(hi X Aa;) > —1 and u,(heX Aag) > —1, we have

U (07 X + (1 = 0)ha X) A (Ba1 + (1 — 0)as))
> u, (0(h X Aay) + (1= 0)(heX A az))
2 Huu(th A al) + (1 - H)UM(hQX VAN CLQ) Z —1, 0 € [0, 1],

so that the function a(h) is convex.

According to Lemma 4.2, the pair (h,,a,) is found as the intersection of the ray
{(h,b(R,,_1)h) : h € (0,00)} with the graph of the function a(h). Obviously, h,, is unique.
Using the properties of a(h) established above and keeping in mind the monotonicity of R,
in n and the monotonicity of b(R) in R, we see that h,, and a, decrease in n.

(ii) We have ¢(0) = —aEX/u,(X) > 0. Furthermore, due to the compactness of H,
¢o(R)/R — B as R — oo. In particular, p(R) < R for large R. Moreover, ¢ is
continuous. Now, it follows from the recurrent relation R, = ¢(R,_1) that R, — R,
where R, < oo is the smallest root of the equation ¢(R) = R. The function ¢(R) is
convex as the maximum of linear functions. As ¢(0) > 0 and ¢(R) < R for large R, the
equation p(R) = R has a unique root.

Fix h € % and a € R such that u,(hX Aa) > —1. Then

E[nX + Ry1(hp X —an)™] > E[hX + R,_1(hX —a)t], neN
Passing on to the limit, we see that
E[fooX + Roo(hooX — o)) > E[hX + Roo(hX — a)™].

As uy(hn X Aayp) > =1, we get 1y, (hooX Aoo) > —1. Thus, (heo, @) is a solution of (4.5)
with R = R,,. The uniqueness of a solution follows from Lemma 4.2 and Theorem 4.3.

(iii) According to (i), there exists R, = lim, R,,. Suppose that R, < oo. Then
¢(Rs) = Ry . Note that the maximum in (5.1) is attained due to the compactness of the
set {h : u,((h,X)) > —1}. Similar arguments as in Lemma 4.2 show that the optimal
solution (h*,a*) of (5.1) satisfies h* > 0. Then

0(Roo) > aE[h* X + Roo(h*X — a*)"] > aRE(h*X — a*)* = Ry > Ree.
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The obtained contradiction shows that R., = oc.
Fix h € % and a € R such that u,(hX Aa) > —1. Then

E[R, ' huX 4 (hoX —an)™] > E[R, 1 A X 4+ (hX —a)t], neN
Passing on to the limit and taking into account the compactness of H, we see that
E(hooX — G0e)™ > E(hX —a)t,
i.e. (hoo,as) is a solution of (5.1). O

Denote by H*(N) the optimal strategy in (3.3). The values h} of Section 3 are related
to the values h, by the equality h) = hn_, . So,

H;(N) = Cp_(N)o, hy—ns1,
Co(N)=Cp (N)(hy-nt1Xn — a(thnJrl))Jr'

Proceeding by the induction in n, we conclude that H;(N) o H for each
—00
n=12,..., where H' and C} are defined by: Cj = c,

H =C: 0, heoy, n=1,2,..., (5.2)
Cr=C_(hooXn —alho))™, n=1,2,.... (5.3)

In particular, if we denote by 7(N) the stopping time inf{n : H} = 0} (see the remark
following Theorem 3.1), then 7(N) — 7, where 7 = inf{n : heX, < a(hy)} has a
geometric distribution with the parameter P(h,X > a). Note in particular that 7 does
not depend on the capital constraint ¢. So, the optimal strategy for the model with the
infinite time horizon has the feature: the trading is switched off after some random time,

which is finite a.s.

Conclusion

We have considered the problem of reward maximization with a risk constraint, the risk
being measured by a discrete-time dynamic coherent risk measure. The class of models
under consideration includes all the multidimensional conditionally Gaussian models.

In Section 3, we reduce the original problem to a sequence of static problems, so
that the optimal solution is constructed by first finding the auxiliary values h; and R
proceeding backwards from N to 0 and then finding the processes C) and H} going
forwards from 1 to N (Theorem 3.1).

The obtained static problem is studied in Section 4. We first reduce the multidimen-
sional problem to the dimension one in the case of conditionally Gaussian model (The-

orem 4.1). Then we propose an explicit solution of the corresponding one-dimensional
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n

3.59

254

159

Figure 1. Simulated paths of the process C;; given by (5.3) and the cumu-
lative capital process Z; = p_,(H},ASk), where H; is given by (5.2). We
have taken the one-dimensional conditionally Gaussian model with EX,, = 0.3,
Var X, =1 (in practice, this corresponds to the case, when the unit time pe-
riod is one year; then the return/volatility ratio for the equity is about 0.3),
a = 0.8, and have traced the evolution of Z), C; for 10 steps. In this ex-
ample, Roo = 1.04, hoo = 0.48, aso = —0.97. The parameter P(hoX > aoo)
equals 0.99, so that the probability that 7 occurs within the first 10 steps
is 1 —0.99' = 0.1. The graph on the left illustrates the situation, when 7
has not occurred within 10 steps; the graph on the right illustrates the (rare)

event, when 7 has occurred within 10 steps.

problem, which is expressed through the (unique) root of some explicitly given function
(Theorem 4.3).

Finally, we analyze in Section 5 the behaviour of the solution as the time horizon
tends to infinity. It is shown (Theorem 5.1) that the optimal strategy and the optimal
values tend monotonically to some limits, which are expressed through the roots of some

explicitly given functions.
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