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Introduction

Overview. Artzner, Delbaen, Eber, and Heath [1], [2] introduced the concept of a
coherent risk measure. These risk measures are static in the sense that they take into
account only the situation at the terminal date. But it is also important to consider their
dynamic extensions, which take into account the information structure, i.e. the filtration.
There are at least 3 reasons:

e (Mathematical argument) One can apply coherent risk measures to problems like

pricing, hedging, and optimization. For dynamic models, one can apply both static
and dynamic risk measures (a static risk measure is simply applied to the terminal
wealth of a portfolio). A big advantage of the latter class is that it allows one to
use a powerful tool of the backward induction.

(Financial argument) Static risk measures do not take into account the timing of
payments in a stream, while this timing is important from the viewpoint of the
funding liquidity risk.

(Ideological argument) If one measures risk through static risk measures, then
a problem immediately arises: what risk measures should be taken for various
time horizons? For example, if one employs the family of Tail V@Rs indexed by
A € (0,1], then what A should be used for one day, one month, and one year so
that risk measures employed for various horizons are consistent in a certain sense?
In our opinion, this problem has no satisfactory solution. On the other hand, for
dynamic risk measures, the time consistency is the basic property.



Dynamic risk measures were studied in a number of papers. However, in contrast to
the static case, in the dynamic case there is still no unanimity about what the “right”
risk measure should look like. There are 4 approaches:

e A risk measure is a map from random variables to real numbers. A random variable
means the terminal capital of some portfolio, while the number means the risk of
the portfolio at the initial time. In this case a dynamic risk measure coincides with
a static risk measure.

e A risk measure is a map from random processes to real numbers. A process means
the capital process of some portfolio, while the number means the risk of the port-
folio at the initial time. This approach was taken in the papers by Artzner et al. [3],
Cheridito et al. [4], [5], Frittelli and Scandolo [21].

e A risk measure is a map from random variables to random processes. A random
variable means the terminal capital of some portfolio, while the value of the process
at time n means the risk of the portfolio given the information available at time n.
This approach was taken in the papers by Detlefsen and Scandolo [14], Féllmer and
Penner [17], Frittelli and Rosazza Gianin [20], Roorda et al. [27], and Weber [30].

e A risk measure is a map from random processes to random processes. The first
process means the capital process of some portfolio, while the value of the second
process at time n means the risk of the portfolio given the information available at
time n. This approach was taken in the papers by Cheridito et al. [6], Cheridito
and Kupper [7], Jobert and Rogers [23], and Riedel [26].

Goal of the paper. We take as the basis the representation of a discrete-time
coherent risk measure from Cheridito and Kupper [7] with an extension to unbounded
processes. This extension is necessary because almost all distributions used in concrete
models are unbounded. In particular, this is the case for the JP Morgan’s Risk Metrics
model, on which we illustrate our concepts and results.

We give the definition and provide two representations of the capital allocation. We also
give the definition and provide three representations of the risk contribution. For both the
capital allocation and the risk contribution, we provide a geometric representation based
on the notion of a generator and a probabilistic representation based on the notion of an
extreme system (the former concept is also the core of the proof of the third, analytic,
representation of the risk contribution). These two notions are introduced in this paper,
while their static counterparts were introduced in [8]. The results of [8] and [9] show
that these notions are very convenient in applications of coherent risk measures to various
problems of finance.

Let us remark that capital allocation and/or risk contribution for coherent risk mea-
sures was considered by Cherny [8], Delbaen [12], Denault [13], Fischer [15], Kalkbren-
ner [24], Overbeck [25], and Tasche [28], but all these papers deal with the static risk
measures. Our results on the representation of capital allocation and risk contribution
might be viewed as the dynamic counterpart of the results from [8].

Structure of the paper. In Section 2, we extend dynamic risk measures to un-
bounded processes. We also introduce and study an important class of risk measures —
the dynamic Weighted VQR.

In Section 3, we introduce the notion of a generator. The main result of the section is
Theorem 3.2, which establishes the relation between risks and generators.

In Section 4, we introduce the notion of an extreme system. The main result of the
section is Theorem 4.2, which provides the form of the generator for the extreme system.



In Section 5, we give the definition of the capital allocation. The main result of
the section is Theorem 5.2, which provides two representations of the capital allocation:
the geometric one is based on generators and the probabilistic one is based on extreme
systems.

In Section 6, we give the definition of the risk contribution. The main result of the
section is Theorem 6.2, which provides three representations of the risk contribution: the
geometric one is based on generators, the probabilistic one is based on extreme systems,
and the analytic one is based on marginal risks.

To illustrate our results, we find the generator, the extreme system, the capital allo-
cation, and the risk contribution for the JP Morgan’s Risk Metrics model combined with
the dynamic Weighted V@R risk measure.

Some technical statements are gathered in the Appendix.

2 Discrete-Time Coherent Risk

Let (Q,F,(Fn)n-o...n.P) be a discrete-time filtered probability space. Let
D = (Dy)n=1,..n be a system of sets of random variables with the properties:

e any random variable Z from D, is positive, F,-measurable, and satisfies the in-
equality E(Z|F, 1) < 1;

e D, is non-empty, L'-closed, uniformly integrable, and F,_;-convez, i.e. for any
Z1,Zy € D, and any [0, 1]-valued F,_;-measurable random variable A, we have
AN+ (1 — )\)ZQ € D,.

Definition 2.1. Let X be a one-dimensional (F,)-adapted process. The coher-
ent utility of X is the [—oo,o00]-valued process u(X) = (un(X))p=o,. v defined as:
Uun (X) = 0,

Up—1(X) = eZssglf E(Z(X, +un(X))|Fnz1), n=N,...,1,
€Dy
where E(£]G) is understood as E((§1|G) — E(£|G) with the convention oo — oo = —o0.
The corresponding coherent risk is p(X) = —u(X). The system D will be called the
determining system of u (or p).

Remarks. (i) From the financial point of view, X describes a stream of cash flows,
i.e. X, is the cash flow at time n, while p,(X) means the risk of the residual part of the
stream after time n. Of course, equivalently one can use cumulative cash flow streams
and cumulative risks (and this is done in most papers). We follow the first approach
because this enables one to avoid the dependence of risk on the initial date 0. Moreover,
the use of payment streams and residual risks leads to nicer formulations of the pricing
and hedging theorems in the forthcoming paper.

(ii) Our conditions on D,, are essential for most of the results below. Moreover, they
are automatically satisfied for natural dynamic risk measures like Weighted V@R (see
Example 2.4).

(iii) Let (D) )p=1,..~ be another system such that D] consists of integrable random
variables and suppose that this system defines the same coherent utility w. Then D; C D,
for any n, which justifies the term “determining system” we are using. Indeed, suppose
that D! & D, for some m. By the Hahn-Banach theorem, there exists £ € L*(F,,)

n fact, Theorems 5.2 and 6.2 are easy consequences of Theorems 3.2 and 4.2.



such that inf,cp EZE < infyep EZE. Take X, = {I(n = m), n =0,...,N. Then
un(X) = 0 for n > m. Furthermore, by Lemma 2.3, there exists Z, € D,, such
that u,_1(X) = E(Z.&|Fm-1). We can find Z € D), such that EZ¢{ < EZ.£. Thus,
essinfzepr E(ZE| Frno1) # um—1(X), which is a contradiction.

(iv) Follmer and Schied [18] and Frittelli and Rosazza Gianin [19] introduced (in the
static setting) the notion of a convex risk measure, which is more general than the notion
of a coherent risk measure. In fact, most of the papers on dynamic risks mentioned
above deal with convex rather than coherent risks. However, many notions below (for
example, the notion of a generator) make sense only for coherent risks. More important,
in applications to pricing, hedging, and optimality, coherent risk measures lead to more
explicit results. For this reason, we restrict our attention to coherent risks. O

We will say that D is probabilistic if E(Z|F,—1) = 1 for any n and any Z € D,.
This property is very natural and, in fact, many papers on dynamic risks automatically
assume it. However, following Cheridito et al. [6], Cheridito and Kupper [7], and Jobert
and Rogers [23], we allow for the inequality E(Z|F, 1) < 1. This accounts for the effect,
which might be called the discounting of risk. To illustrate it, consider a simple example:
D,, = {a}, where a € [0,1]. If we consider the process X, = I(n = N) (corresponding
to the portfolio obtaining 1 unit of money at time N), then uy(X) = a”. Now, the
choice of a is linked to the question: is it true that 1 unit of (discounted) money obtained
at time N has the same utility as 1 unit of money obtained at time 07 If the time
horizon N is 100 days, then the common sense suggests a positive answer; however, if
N is 100 years, then the common sense suggests a negative answer. Thus, for short time
periods one can restrict attention to probabilistic risk measures. However, for long time
periods it is reasonable to consider more general risk measures with E(Z|F,_1) < 1 for
Z €D,.

Remark. If there exists a € (0, 1] such that E(Z|F,_1) = a for any n and any Z € D,
(this is the case for our basic example — Weighted VQR; see Example 2.4), then the risk
measure is reduced to a probabilistic one. Namely, by the backward induction one easily
checks that, for any X and any n, u,(X) = a "ul,(X'), where X/ = a"X,, and v’ is the
coherent utility with the determining system D), =a'D,, n=1,...,N. a

The result below establishes the relationship between our definition of a coherent risk
measure and the representations from Cheridito and Kupper [7] and Riedel [26]. Let us
introduce the notation

5:{ﬂznzznepnu{1}}, 5:{1_N[Zn:ZneDn}.

n=1

For a set £ of random variables, we define the space

LY&)={X e L’: lim supEZ|X|I(|X| > a) = 0},
a— o0 ZeE

where L° denotes the space of all random variables. It is easy to check that L'(&) is
a linear space. Throughout the paper, we identify probability measures that are abso-
lutely continuous with respect to P with their densities with respect to P; conditional
expectations Eq(&|F,) are understood with the convention Eq(£|F,) = 0 on the set

ZSE: = 0}. We will use the notation

argessminé = {€ € A: € = essinf &'}
ragssmin€ = {€ € A2 € = exiinf €}



Proposition 2.2. If X,, € L'(D) for any n, then there exist Z* € D,, such that

) — E( Z T X | F
k=n+1

If moreover D s probabilistic, then there exists Q, € D such that

)ZEQ*< XN:Xk

k=n+1

un(X) = essinf E( Z Tt T X | F,

ZreD
k k k=n—+1

) n=20,..N.

u(X)—essmeQ(ZXk .7-"n>, n=20,...,N.

Qep k=n+1

Proof. We should check only the first statement. Let us prove the following
property going backwards from n = N to n = 0: u,(X) € L'(D) and there exist
Zh 1 € Dpjay..., Zy € Dy such that

-5 55 7z

k=m+1

fm>, m=mn,...,N. (2.1)

Suppose that this statement is true for n and let us prove it for n — 1. Denote
£ = X, +un(X). According to Lemma 2.3, there exists Z;; € argessmin, ., E(Z&|F,_1).
Fix ¢ > 0. We can find a € Ry such that, for & = &I(|¢] < a) and & = £I([€] > a),
we have EZ|&| < ¢ for any Z € D. Then u,_1(X) = + 12, where n; = E(Z3& | Fn1).
Clearly, || < a, while for any Z = Z, ... Zy € D, we have

EZ|’I72| = EZ1 .. -Zn—1|n2| < E(Z1 .. .Zn_lZ;|§2||.7-"n_1) = EZ1 .. Zn_1Z;|§2| < €.

Thus, u, 1(X) € L'(D). Equality (2.1) for n — 1 is obvious.
By the backward induction, one easily checks that, for any Z; € Dy, ..., Zy € Dy,

N
un (X) < E( > ZprZi Xy

k=n—+1

fn>, n=20,...,N.

Remarks. (i) If D is probabilistic, then u,(X) depends only the the cumulative cash
flow remaining after time n and does not depend on the timing of payments (provided
that X,, € LY(D) for any n).

(ii) Without the assumption X,, € L'(D), the above statement is false. As an example,
let N =2, F, be trivial, D,, = {1}, and £ be a non-integrable JF,-measurable random
Variable with E({|Fy) = 0. Then, for X,, = £I(n = 2), we have uo(X) = 0, while

fQGD EQ(X1+X2) —00. ([

Lemma 2.3. Let (2, F,P) be a probability space, G be a sub-o-field of F, &€ be
a non-empty G-conver L'-closed uniformly integrable set, and X € L'(E). Then
argessmin, ¢ E(ZX|G) # 0.

Proof. Find a sequence Z, € & such that EZ, X — inf, .EZX. By the Dunford-
Pettis criterion, £ is relatively weakly compact. Being L!-closed and convex, it is weakly
closed by the Hahn-Banach theorem. Thus, £ is weakly compact. Consequently, (Z,)
has a weak limit point Z, € £. Asthe map £ 3 Z — EZX is weakly continuous, we have
EZ.X =inf, ,EZX. Take Z € £ and consider the set A = {E(ZX|G) < E(Z,X|G)}.
Then Z := I,7 4+ 47, € £ and the inequality EZX > EZ,X shows that P(A4) = 0.
Thus, Z,. € argessmin, . E(ZX|G). O

We now turn to our basic example of a coherent risk measure.
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Example 2.4 (Weighted V@R). (i) In the static case one of the basic examples of
coherent risk is Tail V@R defined as py = —u,,

uy(X) = inf EZX, X e€L°,
Z€Dy
where A € (0,1] and Dy, = {Z : 0 < Z < M, EZ = 1}. The expectation EqX is
understood as EQ X — EqX~ with the convention oc — oo = —o0.
Its natural discrete-time analog is provided by taking

D, = {Z: Z is F,-measurable, 0 < Z < A\™', and E(Z|F,_1) =1}, n=1,...,N.
(ii) A more general class of static coherent risks is provided by Weighted V@R defined
as P, = —uy,
1, (X) = /( COu@Y, X et (2.2
where p is a probability measure on (0, 1]. The integral f((],l] f(z)p(dz) is understood as

Jou I (@uldz) = [,y f(2)p(dz) with the convention oo — 0o = —oo. This functional
can be represented as

u,(X)= inf EZX, X €L° (2.3)
Z€D,,
where
D,={Z:Z>0,EZ=1,E(Z—-2)" <®,(z)Vz € R, } (2.4)
and y
®,(x) = sup [/ / M u(dNdz — xy|, = eR, (2.5)
ye,1] Lo Sz

(see [10; Th. 4.6]). The class Weighted V@R is analytically convenient and in-
cludes as particular cases several very important coherent risks. In particular, if
p(dzr) = B(2,a— 1)"'z(1 — x)*%dr with a € N, then

u,(X) =Emin{Xy,..., X,},

where X7, ..., X, are independent copies of X . This risk measure was introduced in [11],
and we call it Eztreme V@R or XV@R for short.

The above representation enables us to extend Weighted VQR, to the dynamic case
by setting

D, ={Z: Z is Fy-measurable, Z > 0, E(Z|F,_1) =1,

and E((Z —2)*|F,1) < Pu(x) Ve e Ry}, n=1,...,N. (2:6)

The sets D, satisfy the conditions imposed at the beginning of this section (see
Lemma 2.5).

Let us remark that the functional p, can be defined by (2.2) also for a positive (not
necessarily probabilistic) finite measure p on (0, 1] and representation (2.3)—(2.5) remains
valid with the condition EZ = 1 replaced by EZ = p((0,1]). This enables us to extend
the dynamic Weighted V@R to measures p with p((0,1] < 1 simply by replacing in (2.6)
the condition E(Z|F,_1) =1 by the condition E(Z|F,-1) = p((0,1]). O

The lemma below provides a representation of the dynamic Weighted V@QR. It is known
that u,(X) depends only on the distribution of X', so that there exists a functional u,
defined on distributions such that u,(X) = u,(Law X), X € L°.
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Lemma 2.5. Let (Q,F,P) be a probability space, G be a sub-o-field of F, and p be
a positive measure on (0,1]. Define

D ={Z: Zis F-measurable, Z > 0, E(Z|G) = u((0,1]),
and E((Z —2)"|G) < ®,(z) Vo € R, }.

Then D is G-convez, L'-closed, uniformly integrable, and

e%seing(ZX|g) = u,(Law(X]G)), X € L°. (2.7)

Proof. For Z;, 7 € D and [0, 1]-valued G-measurable \, we have
E(AZi+(1-X)2Z;—2)"|G) < AE((Z1—2)"|G)+(1-NE((Ze—2)"|G) < Pu(z), z €Ry,

which proves the G-convexity.

The L!'-closedness is clear, while the uniform integrability follows from the estimate
E(Z —z)* < ®,(z) and the property lim, o ®,(z) =0.

Let us prove (2.7). Fix X € L% Set Q, = Law(X|G)(w), F,(z) = Qu((—0o0,x]),
g\(w) =inf{z : F,(z) > A}, and

(W) = 1—A1E, (ga(w)—)
’ AF,(qr(w))

where A € (0,1) and AF(z) = F(z) — F(z—). The equality

I(AF,(gr(w)) > 0),

{gn<al={F(a—)> A}, acR

shows that ¢, is G-measurable. The equality

{AF(qy) > a} = ﬂ U {F(a1) < AYN{F(az) > A}N{F(a2) = F(a1) > a}, a € (0,1]

n=1 g, <areQ,

as—aq <n*1

shows that r, is G-measurable. Set
Zy=A"(X <q) + (X =q).
By the standard monotone class arguments, for any positive measurable function f,
E(f(X, 0, m)[9) (w) = / f(@,00(w), rA(w))Qu(dz)  aus.
R
It follows that

E(Z0X[G)(w) = /x[YII(fE < (W) + Al (2 = 9a(w))]Qu(dr) = ur(Qu)  as.,

R

where uy = us, (the last equality follows from a well-known representation of uy; see [10;

Prop. 2.7]).
Let o
ap =1 - Z oli/nlt1y,’ ay = pu((ag,a;]), n€N k€ Zs.
i=0



Consider the measures p" = .2 ajden and the random variables Z" = Y72 af Zun .
Let us check that Z™ € D. We have E(Z,|G) =1, so that E(Z"|G) = u((0,1]). Each u"
stochastically dominates p, so that ®,» < ®,. Denote

:// MU, neN xe o]
0 Jy1]

Then
k=1 g
(W), (af) = / And\) ==L, neN kezZ,
(azzl} i=0 ai
k—1 an oo
U, (al) = af a—;+za§, neN, ke,
=0 ! i=k
Consequently,
k—1 an k—1 an 0
D (Za—;> =Wy (af) —af ) —- = Y al, neN ke,
i=0 ¢ =0 i=k

Furthermore, Zy, < A~!, so that

k-1,
(( v )
an
=0 !

The function ®,~ is linear between points of the form 21 0 Lal/al
E((Z" )+|Q)( ) is convex for a.e. w. Therefore,

E((Z" ~2)*]G) < Bun(2) < B,(a), € R,

o0 k=1
) §Zaf:¢#n<23—;>, neN keZ,.
i=k

i=0 !

7, and the function

Thus, Z™ € D.
We have

E(Z"X|G)(w Zakuak (Qu) = U (Qu). neN,

where the sum is understood as —oo if any of the summands equals —oc. It is not
hard to see that the right-hand side of this equality converges to u,(Q.). As a result,
u,(Law(X|G)) is G-measurable and

essinf E(ZX[G) <, (Law(X|G)), X € L.
€

Let us prove the reverse inequality. Take X € L% Z € D. Set Q, = Law(X, Z|G)(w)
and let QL and Q2 denote its projections on the first and the second axis, respectively.
We have

P(/ (y — )" Q}(dx) < ®,(x) Va € Q+) =1.
Ry
Consequently, Q2 € 5# for a.e. w, where

= {Q : Q is a probability measure on R, , yQ(dy) = p((0,1]),

Ry

and /R (y —2)"Q(dy) < ®,(x) Vz € R+}
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Now, it follows from [10; Th. 4.6] that

E(ZX|0)(w) = / 22 Qu(de', de?) > 1y(QL) as.,

RQ

which proves the inequality

essinf E(ZX|G) > U,(Law(X|9)), X € L.

3 Generators

For a sub-o-field G of F and a measurable map C' from  to the set C of non-empty
convex compacts in R? | we denote by L%(G, C) the set of G-measurable R?-valued random
vectors Y such that Y € C a.s.

Definition 3.1. Let X be a d-dimensional (F,)-adapted process. The generator
of X is the C-valued process G(X) = (Gp(X))n=o..n defined as: Gy(X) = {0},

Gn1(X) = esscony E(Z(X,+Y)|F.—1), n=N,...,1,
ZE€Dn,Y €LY(F G (X))

.....

where essconv denotes the essential closed convex hull (see Appendix).

The generator exists if and only if

esssup E(Z||Y — Xpoal[| Fa1) <00, n=1,...,N.
Z€Dn, YELO(Fpn,Gn (X))

This is equivalent to the finiteness of the random variables u, (X?), u,(—X?*) for any n, .
The following statement establishes the relationship between risks and generators.
By ¢, we denote the support function

©p(C) = min(h,z), Ce€C, heR.

zeC

Theorem 3.2. If G(X) exists, then
u,((h, X)) = op(Gn(X)), hER! n=0,...,N.

Proof. We will prove this statement by the induction in n going backwards from N
to 0. Suppose it is true for n and let us prove it for n — 1. By Lemma A.1, the
random set G' = argmin,cq, x)(h,z) is F,-measurable. By Lemma A.2, there exists
Y. € L°(F,,G"). Then

un((h, X)) = on(Gn(X)) = (b, Ys) = essinf  (h,Y),

Y €LO(Fpn,Gr(X))
so that

Un_1({h, X)) = essinf E(Z((h, X;,) + (h, Y.)) | Fu_1)

Z €Dy

= essinf E(Z((h, Xp) +(h,Y))|Fnzn)

Z€Dy,YELI(F,,Gn(X))

= essinf (hE(Z(Xp+Y)|Fnzr))

Z€Dy, Y ELO(Fp,Gn (X))
= SOh(anl(X))ﬂ

where the last equality follows from (a.2). O



Corollary 3.3. If || X,,|| € L'(D) for any n, then

N
G, (X) = essconv E( Z Tt « - 21 Xy,

Z €Dy,

7:”), n=0,...,N.

k=n—+1

If moreover D is probabilistic, then

N
G, (X) = essconv Eq ( Z X,

QeD k=n—+1

7:”), n=0,...,N.

Proof. We should check only the first equality. Denote its right-hand side by G, .
Fix n. Applying Lemma A.4, Proposition 2.2, and Theorem 3.2, we can write

N
on(Gh) = essinfE( > Znsr o Zi(h, Xy)

Zk GDk ket 1

fn) = (b, X)) = pn(Ga(X)), h € R

Hence, P(¢n(G) = ¢n(G,(X)) Vh € Q%) = 1, which yields the result. O

Example 3.4 (Risk Metrics). Let D be the dynamic Weighted V@R corresponding
to a positive measure p with ((0, 1]) < 1 such that the static Weighted V@R p,, is finite
on Gaussian random variables. Let X be a d-dimensional process with

Law(Xn|.Tn_1) :N(O,Cn_l), nzl,...,N,
where the covariance process C' is adapted and satisfies the recurrent relation
C,=aC, 1+(1-a)R,, RY=X'XJ, n=1,...,N.

Here « is a fixed parameter from (0,1).2

Define the values 7, by 7% = 0, Va1 = pu(€ — Yula + (1 — @)€2)1/2), where ¢ is a
standard normal random variable. Let B, be the image of the unit ball in R? under the
map T — CY2%. Then

Gn(X)=7vv_nBn, n=0,...,N.
In order to prove this relation, let us first check the equality
un((h, X)) = =yn_nlh, Cuh)?, heRY, n=0,...,N

going backwards from N to 0. Suppose the statement is true for n and let us prove it
for n — 1. We have

1 ({, X)) = essin E(Z((h, X,) — v (b, Cab) )| 7, )
9 1/2
_ 1/2 g e Xe) oy X
= Gnah) gl (Z ( oGy~ et =g e ) )|
= = n(hs Coah) Pup (€ + (a4 (1= @)€%)'?)
= —Yn-nt1{h, Cn—1h>1/2'
2This might be called the linear Risk Metrics model. In the true Risk Metrics model, the logarithmic

rather than the actual prices follow this relation. However, for short time horizons this difference is not
essential.
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Here ¢ is a standard normal random variable; in the third equality we used Lemma 2.5;
on the set {(h,C,_1h) =0} we pass on directly from the first line to the last one. Thus,
G(X) exists and, according to Theorem 3.2,

on(Gn(X)) = un((h, X)) = —yn_nlh, C,h)?, heRY, n=0,...,N.
Furthermore,

on(YN-nBn) = Yn_n min{h, C;/2z> = —ny,nHC;/?hH, heR, n=0,...,N,

2€ B9
where B is the unit ball in R?. Hence,
P(on(Gn(X)) = ¢n(yn-nBn) Yh € Q) =1,
which yields the desired equality. O

Remarks. (i) Clearly, the sequence (7,) is strictly increasing and tends to infinity.

Furthermore,
lim 121 — o(vVa+ (1 —a)f?) > 1.

n—oo ’yn

This means the the risk at time 0 grows exponentially in N with the exponent
p(va+ (1 —a)é?). For the values a = 0.94, A = 0.05, A = 0.025, and A = 0.01,

the value of py(y/a+ (1 — @)&?) equals 1.13, 1.16, and 1.20, respectively.
(ii) If D is the same as in the above example and (X,,) are independent identically

distributed random variables, then G, (X) = (N — n)G, where G = cl{EQX,, : Q € D}
and D, is given by (2.4). In particular, the risk at time 0 grows linearly in N. O

2000
1500
1000

500

Figure 1. The values 7, for a = 0.94
and A = 0.05 (lower plot), A = 0.025
(middle plot), A = 0.01 (upper plot)

4 Extreme Systems

Definition 4.1. Let X be a one-dimensional (F,)-adapted process. The extreme
system corresponding to X is X'(X) = (X,(X))n=1.. N

Z€Dy
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If X,, € L'(D) for any n, then each X,(X) is non-empty due to Lemma 2.3 com-
bined with the property u,(X) € L'(D), which was checked in the proof of Proposi-
tion 2.2. Obviously, X,(X) is F,_i-convex and uniformly integrable. Furthermore, for

— 1 1
any £ € L'(D), the convergence D,, > 7 —>kL 7 implies the convergence Z;& —>kL ZE.
— 00 — 00
Consequently, X,(X) is L'-closed. Thus, X(X) satisfies all the conditions of a deter-
mining system.
Below G(X;D’) denotes the generator of a process X corresponding to a determining
system D’.

Theorem 4.2. If X, € L' (D) for any n, then

Gn(X; X({h, X))) = argmin(h,z), n=0,...,N, h € R%.

Proof. Fix h € R%. Denote the left-hand side of the above equality by H, and its
right-hand side by H/ . Let us first prove the inclusion H,, C H] going backwards from N
to 0. Suppose the inclusion is true for n and let us prove it for n — 1. Denote

L, = {I € Rd : <h7 :E) = Soh(Gn(X))} = {LE € Rd : <h7 :E) = un(<h’X>)}a

so that H!, = L, NG,(X). For any Z € D,, and any Y € L°(F,, H,), we have Y € H),
a.s., so that

(h, E(Z(Xy +Y)[Fa1)) = E(Z((h, Xn) + un((h, X)) [ Fn1) = un-1((h, X}).

Thus, H, | C L, 1, and consequently, H, | C H, .

Let us prove that H) C H, going backwards from N to 0. Suppose this is true for n
and let us prove it for n — 1. Take £ € L%(F,_1, H, ;). According to Lemma 4.3, there
exist Z € D, and Y € L°(F,,G,(X)) such that £ = E(Z(X,, + Y)|F,_1). It follows
from the line

un—1((h, X)) = (b, &) = E(Z((h, Xu) + (h, Y)) | Foa)
> ezsg%)nnf E(Z(<h7 Xn> + un(<h7X>)) |fn—1) = un—1(<h7X>)

that Z € A, ((h,X)). Moreover, we see that (h,Y) = u,((h, X)) a.e. on {Z > 0},
ie. Y € H ae. on {Z > 0}. Choose an arbitrary Y’ € L°(F,, H!) (it exists due to
Lemma A.2) and set Y = YI(Z > 0)+Y'I(Z = 0). Then Y € L°(F,, H) C L%(F,, H,)
and € = E(Z(X, +Y)|F,_1). Thus, £ € LY(F,_1, H,_1).

According to [22; Th. 5.6], we can choose a family & € L°(F,_y,H, ,), k € N such
that the set (£ (w) : k € N) is dense in H]_;(w) for a.e. w. The above statement shows
that & (w) € H,—1(w) for a.e. w. Thus, we arrive at the inclusion H) ; C H,_;. O

Lemma 4.3. Let (2, F,P) be a probability space, G be a sub-o-field of F, & be
a non-empty G-conver L'-closed uniformly integrable set, and C be an F-measurable
C -valued map such that sup,.. ||z € L*(E). Consider

D= essconv E(ZY|G)
ZeE,YeLO(F,C)

and let X € L%G,D). Then there exist Z € € and Y € L°F,C) such that
X =E(ZY[G).

12



Proof. Consider theset A ={E(ZY|G):Z € &,Y € L°(F,C)}. Forany Z,, 7, € £,
Y1, Y, € LY(F,C), and [0, 1]-valued G-measurable \, we have

AE(Z,Y1(G) + (1 = NE(Z.Y2|G) = EOZY: + (1 — \) Z,Y5|G)

- E<(Azl F1-NZ%) ()\Zl +A(1ZI— \)Zs hi+ AZl(iL_(l)\)—ZAQ)ZQ Y2> ‘g> €4

so that A is G-convex.

Fix n € L*®(G,R?) and let us prove that there exists & € A such that
E(n,&) = infec s E(n,§).  TFor this, set ¢ = inf,-(n,2). Approximating n by
simple random variables, we see that ( is F-measurable. By Lemma A.1, the C-
valued map C' = {z € C : (n,z) = ¢,(C)} is F-measurable. By Lemma A.2,
there exists Y, € L°(G,C"). By Lemma 2.3 applied to G = triv, there exists
Z, € argmin, . EZ(n,Y,). Then, for any Z € £ and Y € L°(F,C), we have

E(n,E(ZY|G)) =EZ(n,Y) > EZ(n,Y.) > EZ.(n,Y.) = E(n,E(Z.Y.]G)).

By the James theorem (see [16]), A is weakly compact. Consequently, A is weakly
closed and, hence, L'-closed.

Suppose that X ¢ A.  The inclusion sup,..|lz] € L'(£) implies that
sup,ep ||z]] € L', so that X € L'. By the Hahn-Banach theorem, we can find
n € L*(G,R?) such that E(n, X) < inf,, E(n,&). Moreover, we can find a simple 7
(i.e. taking a finite number of values) with this property. Then, for ( = inf, ., (n,z), we
have, due to Lemma A.4,

(= ool C)<97, E(ZY|G)) = essinf(n. ).
Arguing in the same way as in the proof of Lemma 2.3, we show that the essinf here is
attained at some &, € A (here we need the G-convexity of A). Then (n, X) > ( = (n,&,),
which contradicts the choice of 77. As a result, X € A. O

Example 4.4 (Risk Metrics). Consider the setting of Example 3.4 and assume that
Cy is non-degenerate (then all C,, automatically satisfy this condition). Then

Xo((h, X)) = {u(Fa(ma))}, heRIN{0},n=1,....N (4.1)
Gu(X; X((h, X)) = {=yn-n(h,Coh) 2C,h}, he RN\ {0}, n=0,...,N. (4.2)

Here

() = /[ 1] M lu(dy), x e (0.1], (4.3)

h = <h7 Cn*1h>71/2(<h: Xn> - 7N*n(a<hﬂ Cﬂ*1h> + (1 - Oz)<h, Xn>2)1/2)7

and F, is the distribution function of & — yy_,(a + (1 — a)&?)'/2, where ¢ is a standard
normal random variable and -, is defined in Example 3.4.
Let us first prove (4.1). Fix h and n. Due to Example 3.4,

argessmin E(Z((h, Xo) + un(¢h, X))) | Fn1)

= argessmin E(Z(h, C,_1h)"* 1, | Fr_1)
ZeD,

= argessmin E(Zn, | F,—1).
7Dy
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Note that
Law(nn|fn—1) = Law(§ - 'YN—n(a/ =+ (1 - O‘)§2)1/2)'

Now, the desired statement follows from Lemma 4.5.

Let us prove (4.2). Fix h and n. By Example 4.4, G,,(X) = —yn_,B,, where
B, = {z € R? : (z,C;'z) < 1}. Due to the non-degeneracy of C,, argmin, .y (h,z)
consists of a unique point xz,. This point provides the minimum of the functional
(h,z) + afx,C'x) with some positive Lagrange multiplier . Differentiating, we find

that x, = —fC,,h with some positive 3. The latter value can be found from the condition
(T, C:7l2y,) = 1, so that finally ,, = —(h, C,h)~*/2C,h. An application of Theorem 4.2
completes the proof. O

Lemma 4.5. Let Q, F,P,G, i, D be the same as in Lemma 2.5 and X € L'(D) be
such that Law(X |G) is continuous a.s. Then

arggisgnin E(ZX1G) = {¢Yu(F(X,-))},

where 1, is given by (4.3) and F(z,w) =P(X < z|G)(w).

Proof. Denote Z, =1, (F(X,-)) and let us first check the inclusion Z, € D. It is easy
to see that Law(F(X,-)|G) is uniform a.s. Thus, it is sufficient to check that, for a [0, 1]-
uniformly distributed random variable &, Ev, (&) = p((0,1]) and E(¢,(§) —2)T < @, ()
for any x € R.. Note that ¢,(£) can be written as f((],l] ATH(E < ANu(dN). Now, the
desired properties follow from the comparison of [10; Th. 4.4] and [10; Th. 4.6].

Denote Q, = Law(X |G)(w). Then, for a.e. w,

E(Z.X|9)(w) = A$¢M(Qw((—w,z]))Qw(dm) = u,(Qu) = essinf E(ZX [G) (w),

where u,, is the same as in Lemma 2.5. The second equality here follows from [10;
Prop. 6.2] and the third one follows from Lemma 2.5.

Finally, take an arbitrary element Z € argessmin,.,E(ZX|G). Denote
Q. = Law(X, Z,, Z|G)(w) and let #° denote the projection of R® on the i-th axis. For
a.e. w, we have

Eq.0'0" = U, (Lawg, 0') = u,(0'), i=2,3,

Eq.0' = 1((0,1]), i=2,3,

Eq.(0' —2)t < ®,(2), 2€Q,i=2,3.
The first equality here follows from Lemma 2.5. As the functions Eq_ (6? —z)* and ®,(x)
are continuous in z, the above inequality holds for any z € R, . As Lawgq, #' is continuous

for a.e. w, it follows from [10; Prop. 2.7] that, for a.e. w, #* = * Q,-a.s. This means
that 7 = Z, a.s. O

5 Capital Allocation

The definition below is a straightforward dynamic extension of the static definition given
by Delbaen [12; Sect. 9].
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Definition 5.1. Let X = (X',..., X%) be a d-dimensional (F,)-adapted process. A
utility allocation between X' ..., X% is a d-dimensional adapted process Y such that

d

d
ZY;:un<ZXi>, n=20,...,N,
i=1

=1

d d
> nY; zun<2hixi>, heR:, n=0,...,N.
=1 =1

A capital allocation is a utility allocation with the minus sign.

A typical financial interpretation is as follows: X? is the stream of cash flows received
by the i-th component of a firm and —Y* is the part of the risk of the whole firm carried
by the i-th component.

Theorem 5.2. (i) (Geometric representation) If the generator of X exists, then an
adapted process Y s a utility allocation if and only if Y, € argminmeGn(X)<e,:E) a.s. for
any n, where e = (1,...,1).

(11) (Probabilistic representation) If || X,|| € L'(D) for any n, then an adapted pro-
cess Y is a utility allocation if and only if Y, € G,(X; Xn((e,X))) a.s. for any n.

Proof. (i) This statement follows from the line

d d
{:EERd : Zx’ :un<ZXi> and z:h’a:Z >un<ZhZ ) VhGRd}
i=1 i=1

= {z € R : {e,7) = ¢c(Gn(X)) and (h,7) > 4(Gn(X)) Vh € R} }

= argmin(e,x), n=0,..., N,

where the first equality is a consequence of Theorem 3.2.
(ii) This statement follows from (i) and Theorem 4.2. O

Example 5.3 (Risk Metrics). Consider the setting of Example 3.4 and assume that
Cy is non-degenerate. It follows from Example 4.4 that the utility allocation is unique
and has the form Y, = —yy_, (e, C,e)~"/2Cye. O

Remark. In typical situations (as in the above example), each X,(>°, X) consists of
a unique element Z*. As follows from Corollary 3.3, in this case the utility allocation is
unique and is given by

N
Yn:E< N Zin . ZiXy

k=n-+1

.7:n>, n=0,...,N

(here we assume that || X,|| € L*(D) for any n). If moreover D is probabilistic, then

Yn = Ea. (ZXk

k=n+1

) n=0,...,N,

where Q, = Z7...Z3P. The measure Q, might be called the ezxtreme measure corre-
sponding to Y, X*. O
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6 Risk Contribution

Definition 6.1. Let X,Y be one-dimensional (F,)-adapted processes. The utility
contribution of X to Y is the process

ul(X;Y) = essinf{W, : W is a utility allocation between X and Y—-X}, n=0,...,N.
The risk contribution is the utility contribution with the minus sign.

By u(X;D') we denote the coherent utility of a process X corresponding to a deter-
mining system D’.

Theorem 6.2. (i) (Geometric representation) If the generator of (X,Y) exists, then
ug (X,Y) = min{z : (z,min{y" : («",¢') € G,(X,Y)}) € Go(X,Y)}, n=0,...,N.
(ii) (Probabilistic representation) If X,,Y, € LY(D) for any n, then

ug(X3Y) =up(X;X(Y)), n=0,...,N.
(iii) (Analytic representation) If the generator of (X,Y) exists, then

us (X;Y) = (ass.) lgigla_l(un(Y +eX)—u,(Y)), n=0,...,N.
Proof. (i) Denote
E,= argmin y, n=0,...,N.
(z,y)EGn(X,Y)
It follows from Theorem 5.2 (i) that an adapted process W is a utility allocation between
X and Y—X ifand only if W,, € E,, a.s. forany n. By Lemma A.1, F,, is F,,-measurable.
Taking
W, =argminz, n=20,...,N
(z,y)EER

yields the desired statement.

(i) By Theorem 4.2, G,(X,Y;X(Y)) = E,. By Theorem 3.2,
un(X; X(Y)) = min{z : (z, y) € E,}. It remains to use (i).

(iii) By Theorem 3.2, un(eX +Y) = ¢1)(Gn(X,Y)). Now, the desired statement
follows from Lemma 6.3. 0

yl

un (Y)

ul (X;Y) x

Figure 2. Geometric represen-
tation of the utility contribution
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Lemma 6.3. For a convex compact C' in R?, we have

lg\{gls_l(gp(g’l)(C’) — ¢01)(0)) =min{z : (z,min{y": («',y') € C}) € C}.

Proof. Denote b = min{y : (z,y) € C}, a = min{x : (z,b) € C}. Take

(a(€),b(e)) € ag%régl«a 1), (z,))-

It is clear that a(e) < a, b(¢) > b, and a(e) ? a, b(e) ? b. Furthermore,

ca(e) + b(e) < ea+ b,

which implies that
0<etbe)—b) <a—ale).
As a result,

lime™ (¢(..)(C) — #(01)(C)) = lime™ eale) + b(e) — b) = o.

Example 6.4 (Risk Metrics). Consider the setting of Example 3.4 with the d-
dimensional process X replaced by the 2-dimensional process (X,Y). We assume that
() is non-degenerate. According to Example 5.3,

. _ c'? cov(X,, Y, | Fn 1)
un (X3Y) = —yn-nlez, Cnéz) 1/2<617 Cnea) = =YN-n m = TIN-n (var(Y, | F, 1))1}2’

where e; = (1,0), e = (0,1), and var denotes the variance. O

Remark. In typical situations (as in the above example), each A, (Y) consists of a
unique element Z*. As follows from Proposition 2.2, in this case

N
u;;(X;Y):E<Z Ziy T X }'n>, n=0,...,N

k=n—+1

(here we assume that X,,,Y, € L'(D) for any n). If moreover D is probabilistic, then

N
axr e (3o

k=n+1

fn), n=20,...,N,

where Q, = Z7... Z}P. O

Appendix

Denote by C the set of non-empty convex compacts in R?. It is well known that C
endowed with the Hausdorff metrics

p(Cr,Cy) = sup ||z — 22|
-’»Cnecn

is a Polish space.
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Lemma A.1. The map
AR x C > (h,C) — argmin(h,z) € C
zeC

18 measurable.

Proof. For any n, the map
AR %xC3 (h,C)—{x€C:{hx)<p(C)+1/n}eC

is continuous and, therefore, measurable. Furthermore, A(h,C) =", A,(h,C), so that
¢, 0 A = lim, p, o A, is measurable for any g € R?. As the functions ¢,, g € R? are
continuous and separate points, B(C) = o(¢, : g € R?) (see [29; Ch. 1, § 1]). Hence, A
is measurable. O

Lemma A.2. Let C be a C-valued random element and X be a d-dimensional random
vector. Then the set {X € C} is measurable. Furthermore, there exists a d-dimensional
random vector Y such that Y € C a.s.

Proof. The first statement follows from the equality

{xeC}=({{hX)> e}
heqd

In order to prove the second one, consider the set A = {(w,z) : € C(w)}. In view of
the representation

A= (M Hw.2): (ha) > en(Cw))},
heQ?
A is measurable. An application of the measurable selection theorem completes the
proof. O

Definition A.3. Let (X))xea be a family of R?-valued random vectors. The essential
closed convex hull of (X))aea is a C-valued random element C' with the properties:

(a) for any A, X, € C aus.
(b) if C' is another random element with this property, then C' C C" a.s.

We use the notation C' = essconvyecp Xy .

Lemma A.4. If esssup, ||-X)| < 0o, then essconvy X, exists. Moreover,
X)) = essinf(h, X,), heR%. 2
goh(esi(éoAﬂv ) eg\sgg( , Xa)s € (a.2)

Proof. The random set
= d . > essi
C hrgd{x eR: (h,z) > erf\sE[r\lf(h,X)\)}
€

is measurable and satisfies condition (a). If C' is another random set with these properties,
then, by the finite-dimensional Hahn-Banach theorem,

C'= (N {zeR : (ha) > en(C)}.
heQd

For any A, we have ¢,(C") < (h, X)) a.s., so that ¢,(C") < essinf(h, X,). This proves
the existence of essconv as well as (a.2) for h € Q. Equality (a.2) for an arbitrary h is
obtained by passing on to the limit. a
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