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Abstract. This paper deals with the following problems:

Is a product of independent martingales also a martingale? We consider 8
particular formulations of this problem.

Is a limit of a converging sequence of martingales also a martingale? We
consider 32 particular formulations of this problem.

Is a stochastic integral of a bounded process with respect to a martingale also
a martingale?

If X = (X¢)i>0 is a positive process such that EX, = EXqy for any finite
stopping time T, then is is true that X is a uniformly integrable martingale?
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1 Introduction

The Seminar “Stochastic Analysis and Financial Mathematics” conducted at the De-
partment of Probability Theory, Faculty of Mechanics and Mathematics, Moscow State
University, by A.N. Shiryaev, A.A. Gushchin, M.A. Urusov, and the author is in some
sense a continuation of the Seminar held at the Steklov Mathematical Institute in the
1970s and 1980s. The latter one was founded by A.N. Shiryaev in 1966 and was con-
ducted by A.N. Shiryaev, N.V. Krylov, R.S. Liptser, and Yu.M. Kabanov. The new
Seminar is sometimes called the “railroad seminar” because it is intended to work “as
regularly as the railroad”. The Seminar has its own symbol:
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One of the distinctive features of this Seminar is that a particular problem is proposed
to the listeners at each meeting and its solution is discussed at the next meeting. These
are called “corner problems” because they are written at a corner of the blackboard.

In this paper, several such problems are considered. Some of the particular formu-
lations are known or very easy to solve; some others are more complicated, and the
obtained (negative or positive) results seem to be new.

1. Products of independent martingales. The problem is as follows: Is a
product of independent martingales also a martingale? We consider 8 formulations of
this problem:

1. Let X and Y be martingales (each with respect to its natural filtration). Is it true
that XY is a martingale (with respect to its natural filtration)?

2. Let X and Y be local martingales (each with respect to its natural filtration). Is
it true that XY is a local martingale (with respect to its natural filtration)?

3. Let X and Y be martingales with respect to a common filtration (F;). Is it true
that XY is an (F;)-martingale?

4. Let X and Y be local martingales with respect to a common filtration (F3). Is it
true that XY is an (F;)-local martingale?

5. Let X and Y be continuous martingales (each with respect to its natural filtration).
Is it true that XY is a martingale (with respect to its natural filtration)?

6. Let X and Y be continuous local martingales (each with respect to its natural
filtration). Is it true that XY is a local martingale (with respect to its natural
filtration)?

7. Let X and Y be continuous martingales with respect to a common filtration (F;).
Is it true that XY is an (F;)-martingale?

8. Let X and Y be continuous local martingales with respect to a common filtra-
tion (F;). Is it true that XY is an (F;)-local martingale?

Here the time index ¢ for X and Y runs through the positive half-line or through a
compact interval (clearly, the answers to the above problems are the same in these two
cases).

Remarks. (i) By a local martingale we mean a process X, for which there ex-
ists a localizing sequence (7,,) such that, for any n, the stopped process (Xn,,) is a
martingale. An alternative definition is that the process (Xias, I(7, > 0)) should be a
martingale. It is easy to check that the answers to the problems under consideration
are the same for these two definitions.

(ii) Two (F;)-local martingales whose product is also an (F;)-local martingale
are said to be orthogonal. Thus, Problem 4 (resp., Problem 8) can be reformulated as
follows: does the independence of local martingales (resp., continuous local martingales)
imply their orthogonality?

2. Limits of martingales. The problem is as follows: Is a limit of a converging
sequence of martingales also a martingale? We consider 8 formulations of this problem:
1. Let (X™) be a sequence of martingales (each with respect to its natural filtration)
that converges to a process X in the sense of the weak convergence of finite-
dimensional distributions. Is it true that X is a martingale (with respect to its
natural filtration)?
2. Let (X™) be a sequence of martingales (each with respect to its natural filtration)
that converges in distribution to a process X . Is it true that X is a martingale
(with respect to its natural filtration)?



3. Let (X™) be a sequence of local martingales (each with respect to its natural
filtration) that converges to a process X in the sense of the weak convergence
of finite-dimensional distributions. Is it true that X is a local martingale (with
respect to its natural filtration)?

4. Let (X") be a sequence of local martingales (each with respect to its natural
filtration) that converges in distribution to a process X. Is it true that X is a
local martingale (with respect to its natural filtration)?

5. Let (X™) be a sequence of martingales with respect to a common filtration (F;)

such that X7 P 5 X, for any t. Is it true that X is an (F;)-martingale?

n—o0
6. Let (X™) be a sequence of martingales with respect to a common filtration (F;)

that converges to a process X in probability uniformly on compact intervals (i.e.
Sup,<, | X¢ — X #) 0 for any t). Is it true that X is an (F;)-martingale?

7. Let (X™) be a sequence of local martingales with respect to a common filtra-
tion (F;) such that X} —® 4 X, for any t. Is it true that X is an (Fi)-local

n—oo
martingale?

8. Let (X™) be a sequence of local martingales with respect to a common filtra-
tion (F;) that converges to a process X in probability uniformly on compact in-
tervals. Is it true that X is an (F;)-local martingale?

Here the time index ¢ for X™ runs through the positive half-line or through a compact
interval (clearly, the answers to the above problems are the same in these two cases).

We consider each of the above problems in combination with one of the following
conditions on (X™):

A. No additional assumptions on (X™) are imposed.

B. The jumps of X" are assumed to be bounded by a constant @ > 0 and XJ = 0.
C. The processes X" are assumed to be continuous and X = 0.

D. The processes X" are assumed to be bounded by a constant a > 0.

Thus, we get 32 = 8 x 4 formulations of the above problem. In formulations 2.A, 2.B,
2.D, 4.A, 4.B, and 4.D, we consider the weak convergence in the space D of cadlag
functions, while in formulations 2.C and 4.C, we consider the weak convergence in the
space C' of continuous functions.

Remark. The above problem arises in connection with limit theorems for stochastic
processes (see [2]).

3. Stochastic integrals with respect to a martingale. The problem is as
follows: Let X be an (F;)-martingale and H be an (F;)-predictable process such that
|H| < 1. Is it true that the stochastic integral of H with respect to X is also an
(F:)-martingale?

Remark. If the word “martingale” in the above problem is replaced by the word
“semimartingale”, “HP-semimartingale” (see [6]), “sigma-martingale” (see [2; Ch. III,
§ 6e]), “local martingale”, or “HP-martingale” (see [3; Ch. I, § 5]), then, clearly, the
answer is positive.

4. Uniform integrability of martingales. The problem is as follows: Let X =
(Xt)i>0 be an (F;)-adapted cadlag positive process such that EX, = EX, < oo for
any (JF;)-stopping time 7 that is finite a.s. Is it true that X is a uniformly integrable
(F;)-martingale?



Remark. The origin of this problem lies in financial mathematics. Namely, let X be
the discounted price process of some asset. Define the set of discounted incomes that
can be obtained by trading this asset as:

N
{ZHn(Xvn—Xun):NGN, ug < -+ <uy <00
n=1

are (JF;)-stopping times, H,, is fun_l—measurable}.

As in [1], define the set of equivalent risk-neutral measures as the set of probability
measures Q ~ P such that Eq¢™ > Eq¢™ forany £ € A (here £~ = (=£)V0, £ =£ Vv 0;
the expectations Eq¢~ and Eq&™ are allowed to take on the value +oo). It is easy to
show that a measure Q ~ P is a risk-neutral measure if and only if EqX, = EqXy
for any finite (F;)-stopping time 7. Thus, the above problem can be reformulated as
follows: does the class of equivalent risk-neutral measures in the above model coincide
with the class of equivalent uniformly integrable martingale measures?

The reader is invited to solve as many of the above 42 problems as possible.

2 Products of Independent Martingales

The answer to the problem “Is a product of independent martingales also a martingale?”
in formulations 1 and 5 is positive as shown by the following theorem.

Theorem 2.1. Let X and Y be independent martingales (each with respect to its
natural filtration). Then XY is a martingale (with respect to its natural filtration).

Proof. Fix s < t. For any A € FX ((F/) denotes the natural filtration of X, i.e.
FYX =0(X,; s<t))and B € F), we have
E(X,Yilalp) = E(XI4)E(Y ) = E(X14)E(XsIp) = E(XYiIalp).
By the monotone class lemma,
{CeFSVvF E(XyYile) =E(XYIe)} = F VvV F).
Hence, E(X,Y; | 72X vV F)) = X,Y,, which implies that E(X;Y; | F2V) = X,Y;. This
is the desired statement. O

The example below shows that the answer to the problem in formulation 2 is negative.
The example is given in the continuous time, but it is easy to provide also a discrete-time
one.

Example 2.2. Let B be a Brownian motion and & be a non-integrable random
variable that is independent of B. Set

I(t<1) t>0
11—t =7

t
T :inf{t >0 :/ HdB; 25},
0

H,=H)(t<T), t>0,

H) =

t
X, :/ H,dB,, t>0.
0



Let 1 be a random variable independent of X taking on values £1 with probability 1/2.
Set Y, =nl(t > 1), t > 0. Then X and Y are independent local martingales (each
with respect to its natural filtration), but XY is not a local martingale (with respect to
its natural filtration).

Proof. The first statement is clear. The second one follows from the property that
for any (F;XY)-stopping time 7, we have {7 <1} € \/,.; F*¥ = {0,Q}, while X; =¢
is non-integrable. O

The next example shows that the answer to the problem in formulations 3 and 4 is

negative.

Example 2.3. Let & and n be independent random variables taking on the values £1
with probability 1/2. Set

0, t<1 0, t<1 t<1
Xt — 7 7 }/t — Y 7 f‘t — 0-(577)7 Y
£, t>1, n, t>1, o(&mn), t>1.
Then X and Y are independent (F;)-martingales, but XY is not an (F;)-local mar-
tingale.

Proof. The first statement follows from the independence of ¢ and &n and the
independence of n and £n. In order to prove the second one, notice that XY is not an
(F;)-martingale. Being bounded, it is not an (F;)-local martingale. O

Remark. Examples 2.2 and 2.3 show that if we add the additional assumption that
the jumps of X and Y are bounded, the answers to the problem in formulations 2, 3,
and 4 will remain negative.

The theorem below shows that the answer to the problem in formulation 8 is positive.

Theorem 2.4. Let X and Y be independent continuous (F;)-local martingales.
Then XY is an (F;)-local martingale.

Proof. Let us first assume that X and Y are bounded. Then, for any ¢ and any
sequence (A™) of partitions of [0, %] whose diameters tend to 0, we have

(3 (e~ X0 0 ) )

t;€A"

= Z E(Xti+1 - Xti)QE(Yti-i-l - Ytz)Q
t;EA™

< max E(Xi,, — Xui,) g;n E(Ys,, — Vi)

= max (EX2  —EX?)- (EY? - EYY).

t;€AT

The latter quantity tends to 0 as n — oo since the function s — EX? is continuous
in s. Consequently, (X,Y) =0, which implies that XY is an (F;)-local martingale.
Consider now the general case. Set X; = X; — Xy, V; =Y, — Y. Then

X,Y, = XoYo + XoY; + X,V + X,V

5



For n € N, set 7, = inf{t : X, > > n}, o, = inf{t: Y, > n}. Then the stopped pro-
cesses X = (X'MT ) and Yon = (YtM ) are independent (.7-}) local martingales. Being
bounded, they are (F,)-martingales. Clearly, XY and X™Y, are (F;)-martingales.
By the reasoning above, X™Y %" is an (JF;)-local martingale. Being bounded, it is an
(F;)-martingale. Consequently, for any n € N, (XY)™"" is an (F;)-martingale. As

Tn N\ 0, — 00, We get the desired statement. O
n—oo

The next theorem shows that the answer to the problem in formulation 6 is positive.

Theorem 2.5. Let X and Y be independent continuous local martingales (each
with respect to its natural filtration). Then XY is a local martingale (with respect to its
natural filtration).

Proof. For n € N, set 7, = inf{¢ : | X;| > n}. Then the stopped process X™ is an
(FX)-local martingale. As |X™| < |X,|Vn and the latter random variable is integrable,
the process X™ is an (F;%)-martingale. For any s < ¢, A € FX, and B € FY, we
have

E(X] Ialp) = E(X7 L)P(B) = E(X7 [)P(B) = E(X* [4p).
Applying the monotone class lemma, we deduce that X™ is a martingale with respect
to the filtration F, = FX V F}. As 7, is an (F;)-stopping time, X is an (F;)-local
martingale. Similarly, Y is in the same class. By Theorem 2.4, XY is an (F;)-local
martingale.

For n € N, set p, = inf{t : |X;Y;| > n}. Then (XY)?" is an (F;)-local martingale.
As [(XY)Pr| < |XoYy| V n, the process (XY)Pr is an (F;)-martingale. Note that p,, is
an (F*Y)-stopping time. Hence, XY is an (F;*")-local martingale. O

The next theorem shows that the answer to the problem in formulation 7 is positive.

Theorem 2.6. Let X and Y be independent continuous (Fy)-martingales. Then
XY s an (F;)-martingale.
Proof. Set Xt X, — X, Y} Y, — Y,. Then

X,Y, = XoYo + XoY; + X,V + X,Y,

and it is sufficient to prove that XY is an (F;)-martingale. Fix s < . For n €N, set

— inf{t: |X;| = n} and o, = inf{¢: |Y;| = n}. Then the stopped processes X and
Y"" are independent continuous (F;)-martingales and, by Theorem 2.4, X™Y" is an
(Fi)-local martingale. Being bounded, it is an (F;)-martingale. Hence,

E(X[Y7 | Fy) = XY, (2.1)

Furthermore, )?{” 2%, X, and the family ()?{”)

n—oo

nen 1 uniformly integrable due to the

martingale property of X. Consequently, X'tT" ﬁ X,. Similarly, }7{’" ﬁ Y. By
the independence of X and Y,
E| X7y — XyYi| < B|X7 (V7 - V)| + B[ (X7 — X))V
= E|X]"| - E[Y" — Vi| + E|X" — X,| - E|Y}|
< E|X,| - E[Y/" - Yi| + E|X" — X,| - E|[Y}| — 0.

n—oo
(The last inequality is the Jensen inequality applied to the martingale X .} Thus,
)?{”57{7” SN X,Y;. Now, (2.1) implies that E()Aftﬁ | Fs) = )?j;, which is the desired
n—oo
property. O



Formulation Answer

1.XEMYEM X LY = XY eM Yes, Theorem 2.1
2. X € Mige, Y € Mioe, X LY == XY € M. No, Example 2.2
3. X e M(F), Y e M(F), X LY == XY € M(F) No, Example 2.3

4. X € Mie(F), Y € Mioe(F), X LY == XY € Myoo(F) || No, Example 2.3

5. XEMLYEMS, X LY = XY € M Yes, Theorem 2.1
6. X e M, Y EML, X LY == XY € MS, Yes, Theorem 2.5
7. X € MY(F),Y € M(F), X LY == XY € M(F,) Yes, Theorem 2.6

8. X € M (F), Y € ME(F), X LY == XY € MS(F,) || Yes, Theorem 2.4

Table 1. Summary of the answers to the problem “Is a product of
independent martingales also a martingale?”. Here we use the following
notation: “X 1 Y” means that X and Y are independent; “X € M”
means that X is a martingale with respect to its natural filtration;
“X € Mi” means that X is a local martingale with respect to its
natural filtration; “X € M“” means that X is a continuous martingale
with respect to its natural filtration; “X € M(F;)” means that X is an
(F;)-martingale, and so on.

3 Limits of Martingales

The answer to the problem “Is a limit of a converging sequence of martingales also a
martingale?” in formulations 1.A-8.A is negative as shown by the following example.

Example 3.1. Let & be a non-integrable symmetric (i.e. § Law —&) random variable.

Set
0, t <1, 0, t<1,
X; = X, = Fi=Fr.
—nVEAN, t>1, & t>1,

Then each X™ is a martingale with respect to its natural filtration as well as with respect
to the filtration (F;). Furthermore, (X™) converges to X in probability uniformly on
compact intervals (hence, the convergence in distribution also holds). However, X is
not an (Fy)-local martingale.

Proof. The first two statements are obvious. The last one follows from the property
that for any (F;¥)-stopping time 7, we have {r <1} € \/,_; F* = {0,Q}. O

The next example shows that the answer to the problem in formulations 1.B, 1.C,
2.B, 2.C, 5.B, 5.C, 6.B, and 6.C is negative.
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Example 3.2. Let B be a 3-dimensional Brownian motion started at a point
BU # 0. Set
1
, U2
V(B2 + (B))? + (B})?
T, =inf{t > 0: X; > n},
th = Xt/\Tn7 t 2 0

X, =

Then each X™ is a continuous martingale with respect to its natural filtration as well as
with respect to the filtration Fy = F;X . Furthermore, (X™) converges to X in probabil-
ity uniformly on compact intervals (hence, the convergence in distribution also holds).
However, X is not a martingale with respect to any filtration.

Proof. By It6’s formula,

3 t i
B: -
X=X / : B!,
t —Jo (B)? +(B?)* + (BY)?)*?

Therefore, X and each X™ are (F/)-local martingales. Being bounded, each X" is an
(FB)-martingale and hence, it also an (F;)-martingale and a martingale with respect
to its natural filtration.

Without loss of generality, we can assume that B = B§ = 0. Then

EX, <E 1 _ const 0.
V(B +(BY)E Vit e
This shows that X is not a martingale with respect to any filtration. O

The next example shows that the answer to the problem in formulations 3.B, 3.C,
7.B, and 7.C is negative.

Example 3.3. Let B be a Brownian motion started at zero. For n € N, consider
the function

ff(t)y=k2"fort € [(k—1)27",k27"), k€N,
define

' =inf{t > 0:a}B; = f"(t)},
}/;n = Cl?Bt/\Tln, t € [O, 2771),

and, for k=1,2,..., set

Topq = inf{t > k27" : Y, +aj 1 (B; — Bo-n) = f"(1)},
Y =Yisu + a1 (Binep,, — Bio-n), t€ k27", (k+1)27"),

where (a})gen are positive real numbers growing to +o0o so rapidly that
pn(t=0: PO = f1(1) <1-27) <2 (3.1

(here g, denotes the Lebesque measure). Let & be a random variable that is independent
of B and has the exponential distribution with parameter 1. Set Xi' =Yg, Xy = &,
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G = o) VFP, Fi = Ga (note that, for any o > 0, Ea is a (G;)-stopping time).

Then each X™ 1is a continuous local martingale with respect to its natural filtration as

well as with respect to (Fy). Moreover, X! P X, forany t >0 (hence, (X™) also
n—oo

converges to X in the sense of the weak convergence of finite-dimensional distributions).
However, X is not a local martingale with respect to any filtration.

Proof. Each process Y™ is a stochastic integral of a locally bounded (F/)-
predictable process with respect to B. Hence, each Y™ is a continuous (F}?)-local
martingale. Consequently, each Y™ is a continuous (G;)-local martingale. This implies
that each X is a continuous (F;)-local martingale (see [5; Ch. V, Prop. 1.5]). Due the
continuity of X", each X" is a local martingale with respect to its natural filtration.

It follows from (3.1) that Y* > ¢ for yy-a.e. t > 0. Hence, Xg 2% ¢t for any

n—oo n—oo
t>0.

The process X is not a local martingale with respect to any filtration since it has
continuous paths of finite variation. O

The proposition below shows that the answer to the problem in formulations 4.B
and 4.C is positive.

Proposition 3.4. Let (X™) be a sequence of local martingales (each with respect to
its natural filtration) such that X§ =0 and |AX"| < a for some constant a > 0. Sup-
pose that (X™) converges in distribution to a process X . Then X is a local martingale
(with respect to its natural filtration).

For the proof, see [2; Ch. IX, Cor. 1.19].
The theorem below shows that the answer to the problem in formulations 8.B and

8.C is positive.

Theorem 3.5. Let (X") be a sequence of (F;)-local martingales such that X§ =0
and |AX"| < a for some constant a > 0. Suppose that (X™) converges in probability
uniformly on compact intervals to a process X . Then X is an (F;)-local martingale.

Proof. For m,n € N, set 7, = inf{t : | X}| > m}, oy, = inf{t : |X]'| > 2m}. Then,
for any m € N and ¢, we have

Tm/\O'mn/\tL)Tm/\t,

n—oQ

and hence, the sequence of stopped processes (X™)™/ % converges in probability uni-
formly on compact intervals as n — oo to the stopped process X7 . Note that

|[(X™)TmAomn| < 2m + a. (3.2)
Hence, (X™)™"?m» ig an (JF;)-martingale, i.e. for any s < ¢, we have
E((X™) e | ) = (X7, (33)
Combining the property

(Xn)zm/\amn P s XtTm

n—oo

with (3.2), we conclude that

(X L X,

n—oo



This, together with (3.3), shows that X™ is an (F;)-martingale. As 7, —— oo, X

n—oe
is an (F;)-local martingale. O

The next theorem shows that the answer to the problem in formulations 1.D, 2.D,
3.D, and 4.D is positive.

Theorem 3.6. Let (X™) be a sequence of martingales (each with respect to its natu-
ral filtration) such that | X™| < a for some constant a > 0. Suppose that (X™) converges
to a process X in the sense of the weak convergence of finite-dimensional distributions.
Then X is a martingale (with respect to its natural filtration).

Proof. Fix s <t. Forany m € N, any s; < --- <s,, < s, any bounded continuous
function f: R™ — R, and any n € N, we have

E(XPF(XT, ..., X" ) = E(X"f(X",..., X" ).

817

Letting n — 0o, we get

E(th(XS17"' X )):E(Xsf(Xsu X ))

’ Sm ’ Sm

By the Lebesgue dominated convergence theorem,
E(Xi (X5, € Ay, X, € Ap)) =E(XI(Xg, € Ay, .., X, € An))
for any intervals Aq,..., A,,. Due to the monotone class lemma,
{C e FE(Xide) = E(X,I0)} = F.

This is the desired statement. O

The next theorem shows that the answer to the problem in formulations 5.D, 6.D,
7.D, and 8.D is positive.

Theorem 3.7. Let (X") be a sequence of (F;)-martingales such that | X"| < a for
some constant a > 0. Suppose that X}' £ X, for any t. Then X is an (F)-
n—o0

martingale.
Proof. For any s < ¢ and any n € N, we have E(X] | F;) = X,. Furthermore,
1
X~ X,. Hence, E(X, | F,) = X,. O
n— 00

4 Stochastic Integrals with Respect to a Martingale

It follows from [4; Cor. 21] that the answer to the problem “Is a stochastic integral of a
bounded process with respect to a martingale also a martingale?” is negative. Here we
give an explicit counter-example (it follows from [4] that such an example exists, but it
is not constructed explicitly).

We construct a uniformly integrable (F;)-martingale X = (X;);>o and a bounded
(Fi)-predictable process H = (H;);>o such that the stochastic integral of H with respect
to X is not a uniformly integrable martingale. This yields the negative answer to the
problem under consideration. Indeed, the process

~ X, t<l1,
Xt: 1-t
X, t>1

10
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Additional assumptions
Formulation

A. No additional
assumptions

B. X =0and
IAX™ < a

C. X2=0and X"
are continuous

D.|X"|<a

1. Xne M, Xx» 2y x 5 X e M

n—oo

No, Example 3.1

No, Example 3.2

No, Example 3.2

Yes, Theorem 3.6

2. X" e M, X" P x L X e M

n—oo

No, Example 3.1

No, Example 3.2

No, Example 3.2

Yes, Theorem 3.6

3. X’Il EM]OC7 Xn &X :?>X e'A/llOC

n—oo

No, Example 3.1

No, Example 3.3

No, Example 3.3

Yes, Theorem 3.6

4. X" EMloa X" ﬂX :?>X € Miqc

n—oo

No, Example 3.1

Yes, Prop. 3.4

Yes, Prop. 3.4

Yes, Theorem 3.6

5. X" e M(F), ¥ X» —25 X, = X € M(F)

n—00

No, Example 3.1

No, Example 3.2

No, Example 3.2

Yes, Theorem 3.7

6. X" € M(F), X" 22 X =5 X € M(F)

n— 00

No, Example 3.1

No, Example 3.2

No, Example 3.2

Yes, Theorem 3.7

7. X" € Mioo(F), VE X —F 5 X, =5 X € Myoe(F)

n—o0

No, Example 3.1

No, Example 3.3

No, Example 3.3

Yes, Theorem 3.7

8. X" € Mie(F), X" 22205 X =5 X € Myoe(F)

n— 00

No, Example 3.1

Yes, Theorem 3.5

Yes, Theorem 3.5

Yes, Theorem 3.7

Table 2.

Summary of the answers to the problem “Is a limit of a converging sequence of

martingales also a martingale?”. Here we use the notation from Table 1 and the additional no-

tation: “X" —2— X” means that (X™) converges to X in the sense of the weak convergence

n—oo

Law

of finite-dimensional distributions; “X™ ——— X” means that (X™) converges to X in distri-

u.p.

bution; “X™ ——— X” means that

n—oo
intervals.

n—oo

(X™) converges to X in probability uniformly on compact




is a martingale with respect to the filtration

~ Fe, t<l1,
F = -1
F. t>1.

Furthermore, the stochastic integral of the process H =H -t I(t < 1) with respect

to X is not a martingale in view of the equality

t =
/ H,dX, :/1 H.dX, t<1.
0 0

Example 4.1. Let

2n n—1
an:2n, bn:m, pn:W’ n € N

Construct the sequence (X,)nen and the sequence of sets (Ap)nen by
X():l, Xlzl, A1:Q,...
P(Xn+1 =dag2...0p41 | An) = Pn+1,
P(Xn+1 = Qa9... anbn+1 | An) = 1 — pn+1,
P(Xo1=X,|AS) =1,

An—i—l = {Xn—l—l =dai.. .an+1}, e

Define the continuous-time process (Xy)i>0 by Xy = Xy, for t € [n,n+1). Set F, = F¥
and consider

Hy=> I(2n—1<t<2n).

n=1

Then X is a uniformly integrable (F;)-martingale, while the stochastic integral of H
with respect to X is not a uniformly integrable (F;)-martingale.

Proof. Clearly, X is an (F;)-martingale. For any n < m € N, we have
E|(Xm — Xn)| = E[(Xm — Xn) L4, |
= E|(Xm - Xn)IAn+1| + E|(Xm - Xn)IAnIAiL+1|
= E|(Xm - Xn)IAn+1| + E|(Xn+1 - Xn)IAnIAZ;‘LH |
One can check by the induction in m that (X, — X;)Ia,,, > 0 for m > n. Thus,
EN (X = Xo)La, | = BE(Xy = Xo)La, 0 = E(Xp1 — Xo) Lapy = E[(Xn1 — Xo)La,u,
and consequently,

E|(Xm - Xn)| = E|(Xn+1 - Xn)IAn|

=az... an(anJrl - 1)172 e PnPni1t+ag. .. Cln(l - bn+1)p2 .- -pn(l - pn+1)

1 n 2
§ag...anpg...pn(an+1pn+1—|—1):ﬁ n+1+1 SE'
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As a result, the sequence (X,,),en converges in L', which means that X is a uniformly
integrable (F;)-martingale.
Furthermore, for any n < m € N, we have

2m n
E|Tap Las,,, [ HodX,| = E(IA%IAgW D (X — X2k1)>
k=1
> E (IAMIAgn+1 (Xon — Xin))
=p2---Pon(l = Pont1)ag - .- agn1(az, — 1)
S 1 1
— nG Aoy = —.
2 4p2 PanQ2 2 N
Therefore,
2m m 2m m 4
E| | HadX,| > ; E|Lis L., | HedX, > P e

As a result, the stochastic integral of H with respect to X is not uniformly integrable. O

5 Uniform Integrability of Martingales

The answer to the problem “If X = (X;);>¢ is a positive process such that
EX, = EX(y < oo for any finite stopping time 7, then is it true that X is a uniformly
integrable martingale?” is positive as shown by the following theorem.

Theorem 5.1. Let (F;) be a filtration satisfying the usual assumptions of right-
continuity and completeness. Let X = (Xi);>0 be an (F;)-adapted positive cadlag pro-
cess such that EX, = EXy < oo for any (F;)-stopping time 7 that is finite a.s. Then
X is a uniformly integrable (F;)-martingale.

Proof. Fix s <t and A € F,. Consider stopping times 7y = s and 7 = slc +1l4.
Then the equality EX,; = EX,, implies that EX;/4 = EX [4. As a result, X is an
(F;)-martingale.

Since X is positive, there exists a limit X, = (a.s.) lim;_,o, X;. By the Fatou lemma
for conditional expectations,

E(Xa | F) < X,y t2>0. (5.1)

In particular, EX,, < EX,. B
Suppose that EX,, < EX,. The process X; = E(Xy | F), t > 0 has a cadlag
modification. Moreover, X, ta—s> X . Consequently, the stopping time
—00

~ EXo— EX,
T:inf{tZO:|Xt—Xt|§ Of}

is finite a.s. By the conditions of the theorem, EX, = EX{, which implies that

- EX, — EX.
EX, >EX, — 0# > EX,..
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This contradicts the equality E)?T = EX, which is a consequence of the optional

stopping theorem for uniformly integrable martingales. As a result, EX,, = EXj.
This, combined with (5.1), shows that E(X | F;) = X; for any ¢ > 0. The proof is
completed. O

We conclude the paper by the following

Question. Let X = (X,);>0 be an (F,)-adapted cadlag process such that, for
any (F;)-stopping time T that is finite a.s., the random variable X, is integrable and
EX, = EXy. Is it true that X is a uniformly integrable (F;)-martingale?
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