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Abstract. The aim of the paper is to provide as explicit as possible expres-
sions for upper/lower prices and for superhedging/subhedging strategies based on
discrete-time coherent risk measures. This is done on 3 levels of generality. For a
general infinite-dimensional model, we prove the fundamental theorem of asset pric-
ing. For a general multidimensional model, we provide expressions for prices and
hedges. For a wide class of models, including, in particular, GARCH, we give more
concrete formulas, a sufficient condition for the uniqueness of a hedging strategy as
well as a numerical algorithm.
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1 Introduction

Overview. The problem of finding adequate price bounds in incomplete markets is
one of the basic goals of the modern financial mathematics. The classical superreplica-
tion/subreplication price bounds are typically unacceptably wide. However, in practice
an agent, who has sold an option, never tries to superreplicate it almost surely (because
this is typically impossible), but rather tries to superreplicate it in such a way that the
resulting risk remains within the limits prescribed by his/her management. Thus, a nat-
ural way to redefine the upper price is to replace the condition that the terminal wealth
should be a.s. positive by the condition that the terminal wealth has a negative risk, the
risk being measured in a more moderate way than simply by the worst case scenario. The
hedging problem then becomes the problem of minimizing risk.

According to recent developments in financial mathematics, the right way to measure
risk is through coherent or more general convex risk measures. Applications of these
measures to pricing have already been studied in a number of papers. Let us mention [1],
2], [3), [6], [7), [8], [1], [12], [13], [15], [16], [17], [18], [19], [20], [21], [22], [25], [26].
[27], [28]. These papers differ by the model under consideration (static, discrete-time, or
continuous-time) and by the risk measure applied (coherent or convex, static or dynamic).
Also, different papers have different objectives: some deal with the fundamental theorem
of asset pricing, some study the dynamic consistency of prices, while some other study
pricing and hedging.

In this paper, we will consider pricing and hedging in discrete-time models. In prin-
ciple, the analysis of such models can be based both on the static and the dynamic risks.



We choose dynamic ones because they allow us to use a powerful tool of the backward
induction. Another choice to be made is between the coherent and the convex risk mea-
sures. Although the latter class is more general, the former one leads to more explicit
results, and for this reason, we restrict attention to coherent risks.

Goal of the paper. The major goal of the paper is to obtain as explicit as possible
forms of the risk-based upper/lower prices as well as superhedging/subhedging strategies
in the discrete-time setting. For a risk measure, we take the definition from [10], which
is, in turn, an extension to unbounded processes of the definitions proposed by Cheridito
et. al. [4], Cheridito and Kupper [5], and Jobert and Rogers [18].

First of all, we prove the fundamental theorem of asset pricing (FTAP) for the risk-
based No Good Deals condition within the framework of a general infinite-dimensional
model (Theorem 2.3).

Then we define the risk-based upper and lower price processes for a stream of cash
flows within the framework of a general multidimensional model."! For price processes,
we provide a probabilistic representation and a geometric one; for (risk-based) hedging
strategies, we provide a geometric representation (Theorem 3.2).

From the practical point of view, it is important to have a fast method of estimating
how the price of a large portfolio is altered after an additional contract has been added
to it, without repeating the whole price calculation procedure for the new portfolio. This
might be termed the price contribution. We provide an expression for this object (Corol-
lary 3.4) based on results of [10].

As our major goal is obtaining as explicit as possible expressions for the price and
the hedge, we then narrow the consideration to a model, in which (S, ©) has the Markov
property, where S is the price process and © is an auxiliary process (e.g., volatility).
For example, models with (exponentially) independent increments, stochastic volatility
models as well as the GARCH have this structure.? Within the framework of the Markov
model, we get more concrete expressions for the price and the hedge as well as a simple
sufficient condition for the uniqueness of a hedge (Theorem 4.6). The results are expressed
through so-called A- and B-operators introduced and studied in the paper.

For a particularization of this model, in which the price process has exponentially
independent increments and each cash flow is a convex/concave function of the underlying
asset, we are able to provide an explicit form of the price, the hedge, and the price
contribution (Theorem 4.8).

The results described above are theoretical. For the practical calculations, one needs
a numerical procedure. For a discretized version of the Markov model, we provide such
a procedure for calculating the price, the hedge, and the price contribution. It is a
combination of the dynamic results of this paper with the static optimization method
proposed by Pflug [23], Rockafellar and Uryasev [24]. The use of this method enables one
to simplify the formulas and to increase the speed of computations.

Among the papers mentioned above, the ones dealing with the FTAP for coherent
risks are Carr et. al. [2], Cherny [7], Jaschke and Kiichler [17], and Staum [27], but all
these papers deal with the static risk measures. The papers that study both the price

'We work with streams of cash flows because this enables us to consider not only single options, but
also books of options; the general class of risk measures we use takes into account the timing of payments,
and therefore, pricing a stream of cash flows is not equivalent to pricing its cumulative cash flow.

2Let us remark that both the technique of discrete-time pricing with coherent risk and the technique
of continuous-time pricing with coherent risk have its advantages and disadvantages as compared to each
other. One of the advantages of the former technique is that it enables one to employ the GARCH model,
which has no proper continuous-time analog.



and the hedge and are applicable to discrete-time models are Follmer and Leukert [16],
Nakano [22], Roorda et al. [25], Sekine [26], and Xu [28]. However, [16], [22], [26], and [28]
deal with the static risk measures, while [25] deals with a finite 2 of a special form and
also differs from our paper at the level of definitions. In fact, our definitions of the price
and the hedge are very close to the ones in Leitner [21], although there is an essential
difference at the level of modeling: [21] deals with a continuous-time diffusion model
and the BSDEs technique, while our paper deals with discrete time and the backward
induction technique.

Our results admit a direct extension to pricing and hedging American options. This
is the topic of the forthcoming paper.

Application. Our results are related to pricing and hedging, but also have an im-
portant interpretation from the viewpoint of risk measurement and management. When
using a dynamic risk measure, a big problem is: what terminal date should be used as
the basis of risk measurement? This problem seems to have no satisfactory solution, and
a very unpleasant feature is that the choice of the horizon essentially affects risk (the
dependence of risk on the horizon is linear or exponential; see [10; Ex. 3.4]). But on
the other hand, if we have a portfolio of perfectly liquid assets, then its risk should not
depend on the horizon since the portfolio can be liquidated at any time. Thus, a more
correct way to analyze risk is through the market-adjusted risk measure, which is closely
connected with the pricing and hedging problem. We show that if a portfolio consists
only of perfectly liquid assets and perfectly illiquid ones, then risk measured this way gets

the form: ) o o
Total risk _Static risk 4 Dynamic risk

of a portfolio  of liquid part of illiquid part. (1.1)
In this application, pricing and hedging get the following interpretation:

Pricing = Risk measurement,
Hedging = Risk management,

Price contribution = Risk contribution.

Let us remark that one more way to look at the pricing and hedging problem is to
interpret it as the coherent utility maximization problem. In this interpretation,

Pricing = Finding the optimal value,

Hedging = Finding the optimal strategy.

Structure of the paper. In Section 2, we prove the FTAP.

Section 3 deals with pricing and hedging in the general multidimensional model. Sub-
section 3.1 presents the general result. Subsection 3.2 is related to the price contribution.
Subsection 3.3 describes the application to risk measurement and management.

Section 4 deals with pricing and hedging in the Markov model. The results are given in
Subsection 4.2. They are expressed in terms of A- and B-operators, which are introduced
and studied in Subsection 4.1. In Subsection 4.3, we consider a particularization of this
model. Subsection 4.4 presents a numerical algorithm.

Section 5 concludes. Some technical results are gathered in the Appendix.



2 Fundamental Theorem of Asset Pricing

Let (2, F,(Fn)n=o,..n,P) be a filtered probability space. Let D = (D,),=1,.. n be a
system of sets of random variables with the properties:

e any random variable Z from D, is positive, F,-measurable, and satisfies the in-
equality E(Z|F,—1) < 1;

e D, is non-empty, L'-closed, uniformly integrable, and F,_;-convez, i.e. for any
Zy,Zy € D, and any [0, 1]-valued F,_;-measurable random variable A, we have
M+ (1—=)N)Zy €D,.

Introduce the notation

5:{ﬂznzznepnu{1}}, 5:{1_N[Zn:ZneDn}.

n=1

For a set £ of random variables, we define the space

L'(&)={X e L": lim supEZ|X|I(|X| > a) = 0},
a—o0 YA

where L° denotes the space of all random variables. It is easy to check that L'(€) is a
linear space.

Let I be an arbitrary set and (S%),—o..n.icr be a family of (F,)-adapted processes
such that S! € L'(D) for any n, i. From the financial point of view, I is the set of
traded assets and S! is the discounted price of the i-th asset at time n.

The following definition was introduced in [10].

Definition 2.1. Let X = (X,),=0,.~ be a one-dimensional (F,)-adapted process.
The coherent utility of X is the [—oo, co]-valued process u(X) = (un(X))n=0,. v defined
as: un(X) =0,

Up—1(X) = eZssian E(Z(X, +un(X))|Fnz1), n=N,...,1,
€Dn
where E(£|G) is understood as E(£7|G) — E(¢|G) with the convention 0o — 0o = —c0.
The corresponding coherent risk is p(X) = —u(X). The system D is called the deter-
mining system of u (or p).

The financial interpretation of the above definition is as follows: X describes a stream
of cash flows, i.e. X,, is the discounted cash flow at time n; p,(X) is the risk at time n
of the remaining part of the stream, i.e. X, ,1,..., Xy.

By H we will denote the set of predictable R!-valued processes H such that only a
finite number of H* differs from zero. From the financial point of view, H is the set of
various trading strategies. The stream of cash flows corresponding to a strategy H € H is

(H,AS), => HIAS,, n=1,...N,
iel
where AS! = 5! —S° .
Definition 2.2. (i) The model satisfies the No Good Deals (NGD) condition if

un((H,AS)) <0 for any H € H and any n.
(ii) The model satisfies the weak NGD condition if uo((H,AS)) <0 for any H € H.
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Introduce the notation

M, ={Z e L°(F,) :E(ZAS!|F, 1) =0Viel}, n=1,...,N,
M ={Q < P:S"is an (F,, Q)-martingale for any i € I},

where L°(F,) is the space of F,-measurable random variables. We identify measures
that are absolutely continuous with respect to P with their densities with respect to P.

We will say that D is probabilistic if E(Z|F, 1) = 1 for any n and any Z € D,,.
We will say that D is strictly positive if Z > 0 a.s. for any n and any Z € D,,. As
an example, the dynamic Weighted V@R with a weighting measure p (see [10; Ex. 2.4]
satisfies the first condition if and only if p((0,1]) = 1; it satisfies the second condition if
and only if p((1 —e,1]) > 0 for any € > 0.

Theorem 2.3 (FTAP). (i) The NGD is satisfied if and only if D, "N M,, # 0 for
any n. N

(ii) If D is probabilistic, then the weak NGD is satisfied if and only if DN M # (.

(iii) If D is strictly positive, then the NGD and the weak NGD are equivalent.

Proof. (i) In order to prove the “only if” statement, fix n. Applying Lemma 2.4 to
g :fn—la E :Dn, and

X = {Z HIAS! : Hi € L(F,_1,[~1,1]) and
i€l

H' differs from zero only for a finite number of Z}

(here L°(F, 1,[—1,1]) denotes the set of F, ;-measurable [—1,1]-valued random vari-
ables), we get D, N M,, # 0.

In order to prove the “if” statement, fix H € H. Going backwards from N to 0, we
easily check that wu,((H,AS)) <0 for any n.

(ii) Let us prove the “only if” statement. We will prove by the induction in N a
stronger one: the weak NGD implies the existence of Q € DNM such that Q|Fy = P|F,.
Suppose the statement is true for N — 1 and let us prove it for N. Denote by A the set
of elements A € Fi, for which there exists H € #H such that u;((H,AS)) > 0 a.e. on A.
Denote a = sup{P(A) : A € A} and find a sequence A(k) € A with P(A(k)) — «. Find
H(k) such that u,((H(k),AS)) >0 a.e. on A(k) and define

H =" H(k)Lagpage1)-

k=1
Going backwards from N to 1, we check that

oo

un((H,AS)) = u((H(k), AS) Lagepag—y, n=1,...,N.

Consequently, u;((H,AS)) > 0 a.e. on A = (J, A(k). Similarly, by the backward
induction we prove that, for
~ H

H = ml(m«fi AS)) > 0),



we have uy((H,AS)) = 1,.
Applying Lemma 2.4 to G = Fq, £ = Dy, and

X = {Z HIAS! + hly: H' € L°(Fy, [-1.1]), h € L%(F, [0, 1)),
el

and H® differs from zero only for a finite number of i},

we get Z7 € Dy such that E(Z;AS!|F,;) =0 for any ¢ and Z; =0 a.e. on A.

Forany H € H, uy((H, AS)) < 0 a.e. on A® since otherwise, for H = HI,+HI ., we
would have P(u;((H, AS)) > 0) > a. Note that P(A¢) > 0 due to the equality Z;I, = 0.
Consider the model defined as ' =Q, F' = F, F, = F,_1, PP =P(-|A9), D, = D,_1,
and (S")¢ =S ;, n=20,...,N —1. For this model, we have uj((H',/ AS")) < 0 for
any H' € H'. Applying the induction assumption, we get a measure Q' < P’ such that
Q'|F, = P'|F, and the process (S!),—1.. n is an (F,, Q')-martingale for any i. Taking
now Q = Z;Q' yields the desired result.

The “if” statement is proved in the same way as in (i).

(iii) Suppose that the NGD is violated, i.e. there exist H € H and ng such that
P(un,((H,AS)) > 0) > 0. Consider

_ Ha
Hq”L — un0(<H’ AS>)
0, n < ng.

I(u,,((H,AS)) > 0), n > ng,

Then wu,,((H', AS)) = I(un,((H,AS)) > 0). Using [10; Lem. 2.3] and going backwards
from ng to 0, one can check that there exist Z, € Dy,..., Z,, € D,, such that

tun({H', ASY) = E(Znsr - - - Zongtng ((H', AS)) | F), 1 =0, ..., mo.

From this representation, we see that P(uo((H',AS)) > 0) > 0, i.e. the weak NGD is
violated. O

Lemma 2.4. Let (2, F,P) be a probability space, G be a sub-o-field of F, £ be a
non-empty G -conver L'-closed uniformly integrable set of random variables, and X be a
conver subset of L'(E) such that essinfzce E(ZX|G) < 0 for any X € X. Then there
exists Z, € € such that E(Z,X|G) <0 for any X € X.

Proof. Fix a finite subset {X;,..., Xg} of X and a finite partition Q = | M, 4,
with A,, € G. Fix m and consider the set

C={E(Z(Xy,...,XKg)|An): Z € E}.

By the Dunford-Pettis criterion, £ is relatively weakly compact. As &£ is convex and
L'-closed, it is weakly closed by the Hahn-Banach theorem. Thus, £ is weakly compact.
As each map € 3 Z +— E(ZX},|Ay) is weakly continuous, C' is a convex compact in RE .
Suppose that C'N (—oc0,0]% = (). By the Hahn-Banach theorem, we can find h € RE
such that
sup (h,z) <0 < inf(h,x).
z€(—00,0]K zeC

Hence, h € RE, and, by a slight move, we can choose h € (0,00)*. Without loss
of generality, >>.h* = 1. Then X, := Y, h*X; € X and inf, . E(ZXo|A,) > 0.
According to [10; Lem. 2.3], there exists Z; € £ such that

E(ZyXo|G) = esZsei?f E(ZX,|G).
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According to the conditions of the lemma, E(ZyXy|G) < 0. But on the other hand, we
should have E(ZyXy|A;,) > 0. The obtained contradiction shows that, for any m, there
exists Z,, € £ such that E(Z,,X;|A,) <0 for any k. Then Z := )" Z,14, € £ and
E(ZXk|o(Ay, ..., Ap)) <0 for any k.

Thus, we have proved that, for any finite subset ) of X and any finite partition A
of €2, whose elements belong to G, the set

BAY)={Z €& E(ZX|A) <0VX € )}

is non-empty. Obviously, B(A,Y) is L'-closed. Being convex, it is weakly closed by the
Hahn-Banach theorem. Furthermore, any finite intersection of sets of this form contains
a set of this form and thus is non-empty. As & is weakly compact, there exists Z, that
belongs to any set of this form. Clearly, Z, is a desired element. a

Remark. Without the strict positivity of D, the “if” statement in Theorem 2.3 (iii)
remains valid, but the “only if” statement is no longer true. As an example, let
N =2, Q = {w,w}, Fo = triv, Fy = F = 2% P(w) = P(w) = 1/2,
Dy ={Zecl’F):0<Z<2EZ=1}, Dy ={1}, So =5 =0, and Sy = Iy,,;.
Consider the strategy H, =0, Hy = If,,). Then u,((H,AS)) = I,,}, so that the NGD
is violated. On the other hand, 21y, € DN M, so that the weak NGD is satisfied. O

3 Pricing and Hedging in the General Model

3.1 Pricing and Hedging

Consider the model of the previous section with a d-dimensional process S and let

The financial interpretation is as follows. We have assets of two types: totally liquid
ones and totally illiquid ones. The discounted prices of liquid assets are given by S?,
1 =1,...,d, while the stream of cash flows produced by all the illiquid assets in a port-
folio is given by F' (so that F,, is the discounted amount received at time n). We will
assume the NGD condition.

Definition 3.1. The upper and lower price processes of F' are defined as

w(F) =essinf{z € L°(F,) : 3H € H : u,((H,AS) — F)+2 >0}, n=0,...,N,
(F) =esssup{z € L°(F,): 3H € H : u,({(H,AS)+ F) —x >0}, n=0,...,N.

< =l

T

From the financial point of view, V,(F) and V,,(F) are the discounted upper and
lower prices at time n of the remaining part of the stream F',i.e. F,1,..., Fy. As there
is complete symmetry between upper and lower prices, we can study only the lower one.
This choice is made for the following reason: we consider F' as a long position of an agent
(this is convenient for the application to risk measurement). Thus, short positions are
included in F' with the minus sign. Then the lower price of F' corresponds to the lower
prices of long positions and the upper prices of short positions.

Let C be the set of non-empty convex compacts in R¢*! . Consider the maps

a(C)=inf{ly e R: (0,y) € C}, CeC, (3.1)
B(C)={heR":{(h,1),(0,a(C))) = ;g(f)((h, 1),z)}, CecC. (3.2)



The value a(C) is finite provided that prgs C' contains 0, where prps denotes the pro-
jection on the space generated by the first d coordinates. The set 5(C') is non-empty
provided that przs C' contains 0 as an inner point
Define the real-valued process (a,,(F'))n—o...n, the C-valued process (G,,(F))n=0,. N
H,(F))n=1... ~n by: ay(F) = 0;if a,(F),...,an(F),
G,(F),...,GN(F),and H, (F),... ,ﬂN(F) are already constructed, we set

.....

G, (F )—essggilv E(Z(AS,, F, + a,(F))| Fn-1), (3.3)
a1 (F) = (G, (F)), (3.4)
H,(F) = L (Fo1, B(G, 1 (F))); (3.5)

where essconv is the essential closed convex hull (see Appendix) and
LY(F,_1,B8(G, ((F))) is the set of JF,_j-measurable random vectors H such
that H € p(G,_1(F)) as. Going backwards from N to 0, we check that
sup,eq () 17l € L'(D) and a,(F) € L'(D) for any n (the argument is exactly
the same as in the proof of [10; Prop. 2.2]). In doing this, we employ Theorem 2.3,
which tells us that 0 € prga G,,(F') a.s. for any n. If moreover 0 belongs to the interior
of prga G, (F) a.s. (as an example, the model of Subsection 4.2 satisfies this condition),
then, according to Lemma A.2, H, . (F) # 0.

By DN M we will denote the system (D, N M,)n—1,. n, where M,, is defined in
the previous section. It is easy to check that each D, N ./\/ln is F,_i-convex, L'-closed,
and uniformly integrable. As the NGD is satisfied, each D, N M,, is non-empty due to
Theorem 2.3.

By u(X;D') we denote the coherent utility of a process X corresponding to a deter-
mining system D’.

Theorem 3.2. (i) We have

V,(F) = a,(F) = u,(F;DNM), n=0,...N.
(ii) If H, € 1, (F) for any n, then
u,((H,AS) +F) -V (F)=0, n=0,...,N. (3.6)

Conversely, if H is a predictable process, for which (3.6) holds, then H, € H,(F) for
any n. Moreover, if D is strictly positive, then it is sufficient here to require (3.6) only
for n=20.

Proof. (i) Going backwards from N to 0, we check that, for any H € H,
un((H,AS) + F) < u,((H,AS) + F;DNM) =u,(F;DNM), n=0,...,N.

Consequently, V., (F) < u,(F; DN M) for any n.
Fix ¢ > 0. Applying Lemmas A.1 and A.4, we get for any n a random vector
H, € L°(F,_1,R%) such that

essinf E(Z((H,, AS,) + F, + a,(F))| Foo1) = ©,1)(G, 1(F)) > a, ((F) — &,

Z€Dx =l

where ¢ is the support function defined by (a.2). Going backwards from N to 0, we
check that
u,((H,AS)+ F) > a,(F)— (N —n)s, n=0,...,N.
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Consequently, V. (F) > a,(F) for any n.

It follows from [10; Lem. 4.3] that, for any n, there exists Z* € D,, such that
E(Z,(ASn, Fo + a,(F))[Fo1) = (0, 2,1 (F)).

This means, in particular, that Z € D, N M,,. Going backwards from N to 0, we check
that u,(F; DN M) < q,(F) for any n.
(ii) If H, € H,,(F) for any n, then

@(U,Qn,l(F))(anl(F)) = <(Hn7 1) (0,(1” I(F))> = _ l(F)7 n=1,.. '7N’
so that, by Lemma A.4,

essinf E(Z((H,,, AS,) + F,, + a,(F))| Fn-1) = a,_(F), n=1,...,N,

Z €Dy

and going backwards from N to 0, we check that u,((H,AS) + F) = a,(F) for any n.
Take now H € H such that (3.6) is satisfied. For any n, we have

{H. € (G, ( )}
= {{(Hn 1), (0,a(G, 1(F))) = inf ((Hn1),2)}

z€G, 1 (F)

= {e,1) (G (F)) = (G, (F)) }
= {essinf E(Z((Hn, ASn) + Fo + 0, (F)) | Fo 1) = a1 (F) }
(

= {egging(Z(( AS,) + Fy + un((H, AS) + F) | Foh) = @, 1 (F)}
= {un 1((H,AS) + F) =V, ,(F)}.

The third equality here follows from Lemma A.4. Thus, H, € (G, ,(F)) a.s.

Let now D be strictly positive. Let H € #H be such that (3.6) is satisfied for n = 0.
We will prove that (3.6) is satisfied for any n going forwards from 0 to N. Suppose
that (3.6) is true for n — 1 and let us prove it for n. According to [10; Lem. 2.3|, there
exists Z' € D,, N M,, such that

up—1(F; DN M) =E(Z(F, + upn(F;DNM)) | Frzy).
Due to the induction assumption,

U (F; DmM) (F) = un_ ((H, AS) + F)

n 1

E(Z,((Hp, ASp) + Fyy +un((H,AS) + F))| Fn1)

E(Z:(F, + u,((H,AS) + F))| F_1).
As Z¥ >0 as. and u,((H,AS) + F) <V, (F) = u,(F; DN M), we conclude that (3.6)
is true for n. O

Remarks. (i) The representation V. (F) = u,(F;D N M) remains valid also for the
infinite-dimensional framework of the previous section.
(i) According to [10; Prop. 2.2], there exist Z} € D, N M,, such that

%) - E<m§1

9

V. (F)= essinf E( Zzn+1 T

Zr€DrNM
k k n men+1




If moreover D is probabilistic, then?

fn) = EQ*< zN: F,

m=n+1

N
V.. (F) = essinf EQ< Z F,

QeD m=n+1

fn), n=0,...,N.

In particular, V. (F') depends only on the cumulative cash flow remained after time n
and does not depend on the timing of payments in this cash flow.

(iii) If each H,(F) is non-empty, then there exists a strategy H € H such that
un((h, AS) + F) = 0 for any n. This means that the superreplication strategy does not
depend on the initial date; its value at any time depends only on the residual part of the
stream. This is very convenient from the practical point of view; otherwise, the method
would have been inapplicable. This consistency property has already been pointed out
by Leitner [21] in the continuous-time diffusion framework.

(iv) The strict positivity of D in Theorem 3.2 (ii) is essential. To see this,
consider the example: N = 2 Fy = triv, F = o(mpm), Fo = o(m,m),
Dn = {Z € Lo(fn) : 0 S Z S 2, E(Z|.,Fn_1) = 1}, S(] = Sl = 0, SQ = 12, F1 = 0, and
F, =10I(m = 1). Here 1,7 are independent and P(n; = £1) = 1/2. Then V,(F) =0
and H,(F) = {0}. However, for H = (Hy, Hy), where H; =0, Hy = I(m; = 1), we have
ug((H,AS) + F) = 0. O

3.2 Price Contribution

Consider the model of the previous subsection and let F' = (F}),—,.. n be another process
such that F! € L'(D) for any n. From the financial point of view, F' is the stream of
cash flows corresponding to a large portfolio and F’ is the stream of cash flows produced
by an additional contract. Let us study the problem: how is the price process altered
when F' is replaced by F'+ F'? From the viewpoint of the next subsection, this problem
is: how is the risk of a large portfolio altered after a contract has been added to it? Of
course, the procedure for calculating the price for F' is carried over to F'+ F'. However, if
F' corresponds to a huge portfolio, then recalculating the price is time consuming and it is
desirable to have at least an approximate but fast method to estimate the price of F + F".
The definition below was introduced in [10]. We use the notation

argessmin§ = {£ € A : £ = essinf ¢'}.
EcA §'eA
Definition 3.3. The extreme system corresponding to a process X and a determining
system D' is defined as X (X;D’') = (X,(X;D’))p=1,. N, Where

X, (X; D) = argessmin E(Zu, (X; D) | Fo1).

ZeD),

If X € LYD'), then X,(X;D') # () for any n (see [10; Sect. 4]). Theorem 3.2,
combined with [10; Th. 6.2], yields

Corollary 3.4. We have

(a.s.) 1%15—1(1”(}? +eF) =V, (F)) =u,(F; X(F;DNM)), n=0,...,N.

3Throughout the paper, the conditional expectations Eq(£|F,) are understood with the convention:

Eq(¢]|F») = 0 on the set {Zg“;: =0}.
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The above expression might be called the price contribution of F' to F. Informally,
the corollary says that if F” is small as compared to F', then

V(F+F)=V, (F)~u,(F;X(F;DNM)), n=0,...,N. (3.7)

Remarks. (i) Typically, X, (F; DNM) consists of a unique element Z,, (as an example,
see Theorem 4.8). In this case one easily checks by the backward induction that

N
u(F'; X(F; DN M)) = E( > Zuir...ZnF,

m=n+1

.7:">, n=20,...,N.
If moreover D is probabilistic, then

un(F'; X(F; DN M)) = EQ< > F,

m=n+1

fn>, n=0,...,N, (3.8)

where Q = Z; ... ZyP. The measure Q might be called the extreme measure correspond-
ing to F. In view of (3.7), it might be regarded as the personal valuation measure of the
agent possessing the portfolio F.4

(ii) Suppose that F = F! + ...+ FK_ where F¥ € L}(D) for any n, k. Suppose that
each X,(F;D N M) consists of a unique element Z,. Then, according to the previous
remark,

=

K N
> un(F¥ DA M) ZE( > Zna... ZuFE

k=1 k=1 m=n+1

fn) — u(F;D 0 M) =V, (F).

So, the sum of price contributions of the components of a portfolio typically equals the
price of the portfolio. 0

3.3 Risk Measurement and Management

Consider the model of Subsection 3.1 and assume that F is trivial.> Let v € R?. From
the financial point of view, we have a large portfolio consisting of two parts: the liquid
part consists of ' assets of the i-th type, i = 1,...,d and the illiquid part produces a
stream of cash flows F'. The holding 7 is already fixed for the time period [0,1], and
the liquid part can be rebalanced at times 1,2,...:;% there is no trading in the illiquid
assets, so that the illiquid part cannot be changed. The time 0 is the current time and
the time NN is chosen in such a way that there are no cash flows in the illiquid part after
this time.

The set of strategies available to the portfolio holder is the set H(y) of d-dimensional
predictable processes H such that H; = ~.

4Tt serves as the dynamic risk-based analog of the classical valuation measure cU'(W), where U is an
agent’s utility function, W is his/her wealth, and ¢ is a normalizing constant.

This assumption is imposed because we want to make a link to classical static (not conditional) risk
measures. However, the results are easily carried over to a general Fg.

6Thus, the unit time period serves as the minimal time needed to get rid of the liquid assets (for
example, one day).
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Definition 3.5. The market-adjusted utility of the portfolio (v, F') is

u™ (v, F) = sup uo((H,AS)+ F).
HeM(v)

The market-adjusted risk is p™ (v, F) = —u™(vy, F).”

Financially, the problem of finding sup here is the problem of risk measurement.
Mathematically, it coincides with the pricing problem. Financially, the problem of finding
the optimal H here is the problem of risk management. Mathematically, it coincides with
the hedging problem.

Consider the determining system D™ given by: D" = D; and D;' = D, N M,, for
n=2,...,N. Theorem 3.2 yields

Corollary 3.6. We have u™ (v, F) = uo({y, AS) + F;D™).
Let now (7, F") be another portfolio with F! € L'(D). Introduce the notation

argmin EZ({, AS)) + Fi + u1(F;DNM)), n=1,
X:l(F): 7€Dy
X (F;DNM), n=2,...,N.

It is easy to check that X, (F;D™) = X™(F) for any n. Corollary 3.6, combined with [10;
Th. 6.2], yields the following expression for the market-adjusted utility contribution of

(VS F') to (v, F):

Corollary 3.7. We have

lime u™((y, F) + (v, F")) —u™({y, F))] = inf E [Zl(fy', ASy) + Z Zl...ZnF,'l} .

e0 In€X(F)
Let us now suppose that the portfolio consists of several subportfolios, i.e.
(v,F) = (Y, F') + -« + (%, FK), where v* € R?, F¥ € L'(D). Let us study how
the risk of the whole portfolio is divided between the subportfolios. The following defini-

tion is a reformulation for our case of the one from Delbaen [14; Sect. 9].

Definition 3.8. A market-adjusted utility allocation between (y', F1), ... (v%, FK)
is a collection of real numbers z!, ..., 2% such that

K
Z:L‘k =u" (v, F),
k=1

K K
th:rk > u™ (Z hk(’yk,Fk)> Vh € RY.
k=1 k=1

A market-adjusted capital allocation is —x', ..., —xX.

"The reader might think that it would be more natural to consider here the optimization over the
whole set M, not only #H(vy). The choice we make reflects the following: at time 0 an agent already has
a fixed holding in liquid assets; this holding is chosen not by risk minimizing considerations, but by some
exogenous considerations. The market-adjusted risk is thus the minimal risk that can be achieved by
rebalancing the portfolio in the future.

12



Corollary 3.6, combined with [10; Lem. 4.4] and [10; Th. 5.2], yields

Corollary 3.9. A collection x', ..., 2% is a market-adjusted utility allocation between

(V4 FY), ..., (v, FE) if and only if there exist Z, € X™(F) such that

N
o =EZ (Y AS)+EY Zi... Z,F), k=1,... K.

n=1

Remarks. (i) It follows from [10; Sect. 4] that X*(F') is non-empty for any n, so that
a market-adjusted utility allocation exists.

(ii) Typically, each X"(F) is a singleton (as an example, see Theorem 4.8). In this
case the market-adjusted utility allocation is unique and its components are exactly the
market-adjusted utility contributions of (v*, F¥) to (v, F'). If moreover D is probabilistic,
then 2% = Eq((+*,AS1) + >, F¥), where Q = Z;...ZyP. The measure Q might be
called the market-adjusted extreme measure of an agent possessing the portfolio (v, F). O

Finally, let us find out how the market-adjusted risk is divided between the liquid
and the illiquid parts of the portfolio. Thus, we should consider (', F') = (v,0),
(72, F?) = (0, F). Then, according to Corollary 3.9, any market-adjusted utility allo-
cation has the form

N
vt = EZi{7,AS)), x? = EZZ1 oIl =EZ\(F +u (F; DN M)),

n=1

where Z, € X"(F). (Note that here xq, x5 depend only on Z; and do not depend on
Zy, ..., Zn.) In particular,

P, F) = —at —a* < p*((y, AS1)) + po(F; DOAM).

Here p*(X) = —inf,.p EZX. If EZ =1 for any Z € Dy, then p* is a static coherent
risk measure. Thus, we have “proved” (1.1).

4 Pricing and Hedging in the Markov Model

4.1 A- and B-Operators

Let (€2, F,P) be a probability space. Recall that a basic static risk measure Tail V@R is
defined as p), = —u,, where

uy(X) = inf EZX, X € I'.
Z€Dy

Here A € (0,1] and
Dy={Z:0<Z< X' EZ=1}. (4.1)

The expectation EZX is understood as EZXT — EZX~ with the convention
00 — 00 = —00.
Consider the functional



where (1 is a positive measure on (0,1] with p((0,1]) < 1. The integral f(o 1 f(z)pu(dr)
is understood as f((],l] fH(z)pu(dx) — f(O,l} f~(z)p(dz) with the convention oo — oo = —o0.
For a probabilistic p, p, = —u,, is a static risk measure termed Weighted V@R. According
to [9; Th. 4.6], u, admits a representation

u,(X)= inf EZX, X €L° (4.2)
ZeD,
where
={Z:7>0,EZ=pu((0,1]), and E(Z — 2)* < ®,(z) Vz € R, }, (4.3)
) = sup [// A u(dN)dz — zy|, z €R,. (4.4)
yel0,1] [2,1]

Let p be a positive measure on (0,1] with u((0,1]) < 1. Let d € N, m € Z,, and
Dy, D; be measurable subsets of R“”™. We will denote points of R“”™ as (z,y), where
r€R?Y, y € R"; by X and Y we will denote the projections of R¥*™ on R? and R™.
Let (P(2,Y))(y)ep, be a family of probability measures on D;. We assume that P is
weakly continuous in (z,y) and, for any (z,y) € Dy, there exists £ > 0 such that

inf (< IXIT(X] > B) — 0, (4.5)

(#,y")€Be(z,y)NDo

where B.(z,y) is the ball of radius e centered at (z,y) and w, py,y) is defined by (4.2)
with Q = Dy, P = P(2,y"). We also assume that

Uy, (o) ((h, X — 2)) <0 Vh € R\ {0}, (z,y) € D,. (4.6)
Introduce the notation

;C(D) = {f € C(D) : Elal,ag,bl,bQ € R, hl,hg € Rd :
Cl1<h1,l'> + bl S f(x:y) S a2<h2,x> + b?: (.ZE,’y) S D}7

where C'(D) is the space of the continuous functions D — R.

Definition 4.1. The A- and B-operators are defined as:

Au,Pf(xay) = :élﬂg Uu,P(m,y)«haX - I,E> + f(X: Y)), (I,E,’y) € D07 f € ‘C(Dl):

M,Pf(z y) - arhgrlgfxu,uP z,y) (<h X - >+ f(X7 Y))7 (l‘,y) € DO’ f € ‘C(Dl)

We will say that a set S C R¥™™ is strongly connected if SN{z € R? : a; < (h,z) < as}
is connected for any a;,as, € R, h € R%. Below “supp” denotes the support and “Law”
denotes the distribution.

Theorem 4.2. (i) For any f € L(D,), we have A, pf € L(Dy).

(ii) For any f € L(D1), (z,y) € Dy, we have B, pf(x,y) # 0.

(iii) If p((0,1)) > 0, f € L(Dy), and, for some (x,y) € Dy, supp P(x,y) N Dy
is strongly connected and Lawp(,,)(h,X) is continuous for any h € R\ {0}, then
B, pf(z,y) is a singleton.
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Proof. (i) Fix f € £L(D,). Denote

X = [% x| <n,
n)=
nX/|X|, |X|>n.

It follows from (4.5) that, for any h; € R?, hy € R,
Uy, P ) ({1 X () = 2) + ho f(X (), Y)) ——— 0, p(a.)((h1, X — ) + ha f(X, V)
locally uniformly in (z,y). Furthermore, the map
Do 3 (2,y) — Lawp(ay)((h1, X(n) — ) + ha f (X (n),Y))

is weakly continuous and, for any (z,y) € D; there exist ¢ > 0 and a compact interval
I C R such that the restriction of this map to B.(x,y) takes values in the space 90([)
of probability measures concentrated on 1.

It is well known that u,(X) depends only on the distribution of X (see, for exam-
ple, [9; Prop. 2.7]), so that there exists a map u, defined on distributions such that
ur(X) = uy(Law X), X € L. The same is true for u,. For any compact interval I C R,
the map 9M(I) 3 Q — u,(Q) is weakly continuous as can be seen from the explicit repre-
sentation of wy; see [9; Prop 2.7]. Approximating p by finite sums of the form ) ayd),
(x denotes the delta-mass concentrated at \), we see that the map M(/) > Q — u,(Q)
is weakly continuous. Thus, we have proved for any h; € R?, hy € R the continuity of
the map

Do 3 (z,y) — Uy pay) ((h1, X —z) + ho f(X,Y)).

Consider the map Dy 3 (z,y) — C defined as
G(:Ea y) = CI{EP(m,y)Z(X - T, f(Xa Y)) VS Du,P(m,y)}a (1‘7 y) € Do, (47)

where “cl” denotes the closure and Dy, p(y ) is defined by (4.3) with Q@ = Dy, P = P(x,y).
The result proved above says that, for any h € R*! | the map Dy 3 (z,9) — ¢n(G(z,y))
is continuous, where ¢ is the support function given by (a.2). From this it follows that
the map Dy 3 (z,y) — G(x,y) is continuous in the Hausdorff metrics (a.1). Due to (4.6),
G(z,y) € Cy for any (z,y) € Dy, where Cqy is the set of elements C' € C such that 0
belongs to the interior of prrs C. It is seen from the line

u,u,P(m,y)(<h'a X - l‘> + f(X7 Y)) = ZEDinf <(h7 1)a EP(m,y)Z(X - T, f(X7 Y))>
‘ w,P(z,y) . (48)
= inf <(h,1),2>, h e R ) (.ZE,’y) G1)(]
2€G(z,y)
that
Aupf(z,y) = a(G(x,y)), (z.y) € Dy, (4.9)

where « is given by (3.1). Clearly, the restriction of « to C is continuous in the Hausdorff
metrics. As a result, the map Dy > (z,y) — A, pf(x,y) is continuous.
Find a,b € R, h € R? such that f(z,y) < a(h,z) + b for any (x,y) € D;. Then

A, pflz,y) < supd Uy, p(zy) (P, X — x) + alh, X) + D)
h' ER

= hsu]gd u,u,P(m,y)«hl +ah, X — l‘>) + :U’((Oa 1])(a<ha l‘> + b)
'e

= p((0,1])(afh, ) +0),  (z,y) € Do.
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The second equality here follows from (4.6). A similar estimate holds below. Thus,
A,pf € L(Dy).
(ii) It is seen from (4.8) that

BN,Pf(xay) = ﬁ(G(ZE,y)), (1‘,y) € Do, (410)

where (3 is given by (3.2). As 0 belongs to the interior of prgs G(z,y), we get the desired
statement.

(iii) Suppose that there exist hy # hy € B, pf(x,y). Without loss of generality,
hy = 0. Denote P(z,y) by P. As lim, , ®,(z) = 0, the set D, p is P-uniformly
integrable. By the Dunford-Pettis criterion, D, p is P-relatively weakly compact. As
D,.p is L*(P)-closed and convex, it is P-weakly closed by the Hahn-Banach theorem.
Thus, D, p is P-weakly compact. It follows from (4.5) combined with [7; Prop. 2.6]
that X € L'(D,p). Hence, the map D,p > Z — EpZ(X — x, f(X,Y)) is P-weakly
continuous. Consequently, there exists Z, € D, such that EpZ. (X — z) = 0 and
ErZ.f(X,Y)=A,pf(z,y) (here we recall (4.9)). Then

Z, € argminEpZ((h;, X — ) + f(X,Y)), i=1,2.

ZeDu,P

Let us make in R? a change of coordinates, so that in the new coordinates the vector
hy is written as (1,0,...,0). Then any point (z’,9') of R¥™™ can be written as (u,v),
where u € R is the first coordinate of 2’ in the new system and v € R“™~! is the vector
that consists of the remaining d—1 coordinates of x’ in the new system and the vector 3’.
Define g(u,v) = f(u,v), g(u,v) = u+ f(u,v), where f(u,v) is the function f rewritten
in the new coordinates. Then EZ,(U — xy) = 0 and

Z, € argminEpZg(U, V) Nargmin EpZg(U, V),

Z€Dy.p Z€Dy.p

where zy is the first coordinate of z in the new system and U, V denote the
projections of R¥*™ on R, R¥*™-! Furthermore, it follows from (4.6) that
’LLMP(U — LE(]) <0< —Uu7p(—U + LE(]).

According to [9; Th. 4.4], Z, can be represented as Z, = f((],l] Zyiu(dN), where Z(\, w)
is jointly measurable and Z, € D, p for any A € (0,1], where D, p is given by (4.1) with
Q= D;, P=P. It is seen from the line

i (9U.V) = ErZeg(U.V) = [ EnZag(U.V)u(d)

(0,1]

2/ ur p(9(U, V) (dA) = 1, p(g(U, V)
(0,1]

that Z € argmin,.p,  EpZg(U,V) for p-a.e. A. The same is true for g(U, V).
Fix A € (0,1) such that

Zy € argminEpZg(U, V) NargminEpZg(U, V). (4.11)
ZGD)\’P ZGD)\’P

Without loss of generality, 0 is a A-quantile of Lawp g(U,V). Below we will use the
notation: S =supp PN Dy, Sy = {(v,v) €S:u€ (a,b)}, | =inf{u:Tv: (u,v) € S},
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r=sup{u:Jv: (u,v) € S}, S=5u,,

= {(u,v

" ={(u,v

JERM™ : 3 >0:Zy, = A" ae. on B.(u,v)N D},

) €
Et={ue

(

(

ER™™ 3¢ >0: 7, =0ae. on B.(u,v) N D1},
l,r):3v: (u,v) €S and g(u,v) > 0},
l,r):3v: (u,v) €S and g(u,v) =0},
l,r):3v: (u,v) € S and g(u,v) < 0}.

E'={uc
E ={ue

B , T
Let us consider several cases.

Case 1. Suppose that ¢ = 0 P-a.s. Then g(u,v) = u P-as. Due to the inclu-
sion Z, € argming.p ,EpZg(U,V), we get EpZ,(U — 20) = u,,p(U — x9) < 0, which
contradicts the choice of Z,. So, this case is excluded.

Case 2. Suppose that ¢ < 0 P-a.s.

Case 2.1. Suppose that sup{u : v € E°} = r and sup{u : v € E~} = r. Take
(u,v) € S with u < r. Using Lemma 4.4, we can find (v/,v") € S such that u < u' < r,
g(u',v") < 0, and g(u',v") > g(u,v). Applying Lemma 4.3 to & = g(U,V), we get
(u/,v") € C'. Applying Lemma 4.3 to & = g(U,V), we get (u,v) € C'. As (u,v) is
arbitrary, we see that Z, = A\~ a.s. But this contradicts the property A € (0,1). So,
this case is excluded.

Case 2.2. Suppose that sup{u : u € E°} < r. Note that {u : u € E°} #
since otherwise ¢ < 0 P-a.s., so that 0 cannot be a A-quantile of ¢g(U,V). Denote
a = sup{u : u € E°}. Applying Lemma 4.3 to £ = ¢g(U, V), we get S,y C C'. Take
(u,v) € S with u < a. Using Lemma 4.4, we can find (v/,v') € S such that v’ > a
(then g(u',v') < 0) and g(u',v") > g(u,v). Applying Lemma 4.3 to £ = g(U,V), we
get (u,v) € C'. As (u,v) is arbitrary, we get Sy, C C'. Furthermore, LawpU is
continuous, so that P(U = a) = 0. Thus, Z, = A1 a.s. So, this case is excluded.

Case 2.3. Suppose that sup{u : u € E7} < r. Note that {u : u € E7} # () since
otherwise ¢ = 0 P-a.s. Denote a = sup{u : v € E~}. Take (u,v) € S with u < a.
Using Lemma 4.4, we can find (v',v") € S such that v < v < a, g(u',v") < 0, and
g(u',v") > g(u,v). Applying Lemma 4.3 twice, we get (u',v") € C'. Thus, Sy,q C C*.
Furthermore, on S, g = 0, so that g(u,v) = u. Applying Lemma 4.3 to £ = g(U, V),
we see that there exists b € [a,7) such that Sy, C C' and S,y € C°. Applying
Lemma 4.3 to £ = U, we get Z, € argming.p, ,EpZU.

Case 3. Suppose that ¢ > 0 P-a.s. Arguing in the same way as in Case 2, we conclude
that there exists b € (I,7) such that S C C', S,y € C%, g(u,v) = u on Sgy), and
Z € argmingcp  EpZU.

Case 4. Suppose that g takes both strictly positive and strictly negative values on S'.
Make the following observation. If (u,v) € S is such that g(u,v) > 0, then (keeping in
mind that P(U = u) = 0) we can find a sequence (u,,v,) € S such that u, # u and
(tn, vy) = (u,v). Thus, E* has no isolated points. The same is true for E~.

Case j.1. Suppose that there exist u; € E1, uy € E~ such that u; < us,.

Case 4.1.1. Suppose that there exists uy € E° such that uwy < u;. Accord-
ing to the reasoning at the beginning of Case 4, we can find u},u] € E* such that
up < u} < u} < ug. Using Lemma 4.4, we can find (u3,v3) € S, (u4,v4) € S such that
ug € [ug, uy], us € [uf,us], g(us,vs) >0, g(us,vs) <0, and g(us,v3) < g(u4,vs). Apply-
ing Lemma 4.3 to £ = g(U, V), we get (us,v3) € C°, (u4,v4) € C*. Applying Lemma 4.3
to £ =g(U,V), we get a contradiction. So, this case is excluded.

Case 4.1.2. Suppose that there exists uz € E° such that us > uy. Arguing in the
same way as in the previous case, we get a contradiction. So, this case is excluded.
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Case 4.1.3. Suppose that there exist a; < ap € (I,r) such that ¢ >0 on S(4,), =0
on S(a1,a2)7 and g <0 on S(GQ’,«).

Case 4.1.53.1. Suppose that a; < ay. Using Lemma 4.4, we can find (uj,v,) € S,
(ug,v9) € S such that u; < a1, uy > ay (then g(uy,v;) > 0, g(ug,v3) < 0), and
g(uy,v1) < g(ug,ve). Applying Lemma 4.3 twice, we get a contradiction. So, this case is
excluded.

Case 4.1.3.2. Suppose that a; = as. Applying Lemma 4.3 to
we get Suay € C° and S, € C'. Applying Lemma 4.3 to ¢
Zy € argmaxyep, ,EpZU.

Case 4.2. Suppose that there exists a € ([,r) such that ¢ < 0 on Sg, and
g > 0 on Sy, . Denote a; = sup{u < a:u € E7}, ap = inf{u > a : v € E*}.
Take (u,v) € S with u < ay. Using Lemma 4.4, we can find (v/,v") € S such that
u<u <a, gl v) <0, and g(u',v'") > g(u,v). Applying Lemma 4.3 twice, we get
(u,v) € C'. Thus, Sy, € C'. Similarly, Sq,,) € C°. Furthermore, on S, 4,),
g = 0 and g(u,v) = u. Applying Lemma 4.3 to & = g(U,V), we see that there exists
b € a1, as) such that Sy C C' and Sy, € C°. Applying Lemma 4.3 to £ = U, we get
Zy € argmingep | EpZU.

Thus, we have considered all the possible cases and excluded them, except for cases 2.3,
3,4.1.3.2, and 4.2. Let us now exclude them also. Suppose that

(X € (0,1) : upp(U) < EpZ3U < —uy p(=U)) > 0. (4.12)

9(U, V),

& =
= U, we get

Then we can choose A €  (0,1) satisfying (4.11) and the inequality
urp(U) < EpZ\U < —uyp(=U). Then cases 2.3, 3, 4.1.3.2, and 4.2 are excluded, and
we obtain a contradiction with the existence of hq, hs.

Now, suppose that (4.12) is violated. In view of the inequality
urp(U) < EpZ\U < —uy(—U), this means that, for p-a.e. A € (0,1), we have
either EpZ\U = uy p(U) or EpZ\U = —u, p(—U). If case 2.3, 3, or 4.2 is satisfied for
some A, then one can see (with the help of Lemma 4.3) from the resulting structure of g
that

argmin EpZg(U, V) NargmaxEpZU = () VX € (0,1).

ZEDy p ZEDy p
This implies that EpZ\U = uy p(U) for p-a.e. A € (0,1). Furthermore, for A = 1,
Dyp = {1}, so that EpZ,U = uy p(U). Thus,

EpZu(U — 19) = /

(0,1]

EpZy(U — z0)p(d)) = / (U = ) p(dN) = wp (U — 20) < 0.
(0,1]

On the other hand, Z, has been chosen so that EpZ,(U — z7) = 0. Thus, we arrive at

a contradiction, which shows that cases 2.3, 3, and 4.2 cannot be realized. In a similar

way, we exclude case 4.1.3.2. As a result, we arrive at a contradiction with the existence
of hl, h2 . O

Lemma 4.3. Let £ be an integrable random variable and \ € (0,1]. Then an element
Z € D, belongs to argming.p, EZE if and only if Z =X " a.e. on {€ < q\} and Z=0
a.e. on {&=q\}, where q\ is a A-quantile of &.

Proof. Let Z, be an element of the described form and Z be an arbitrary element
of D,. Let us prove that EZ,¢ < EZ¢. Without loss of generality, we can assume that
gx = 0. Then

ZE— 7€ =(Z— N"NEI(E < 0)+ ZEI(E > 0) > 0.

Furthermore, the a.s. equality here is possible only if Z also has the described form. O
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Lemma 4.4. Let S C R“*™  be such that, for any a,b, the set
SN {(u,v) € RFE™ . g < u < b} is connected. Let f € C(S). Then, for any
(ur,v1) € S, (ug,v9) € S, and z € [f(uy,v1), f(ug,v2)], there exists (u,v) € S such that
u € [uy, us] and f(u,v) = z.

Proof. The statement immediately follows from the connectedness of
S {(u,v) € RH™ g < u < uy}. O

To conclude this subsection, we find the explicit form of A- and B-operators in a
particular case. Let u = J,, where A € (0,1), i.e. we deal with Tail V@QR. To indicate
this, below we replace u by A in the notation. Let Dy = Dy = (0,00) and P(z) = Law £,
where £ is a strictly positive integrable random variable such that Law ¢ is continuous,
suppLaw & =R, , and u,(€) < 1 < —uy(=§).

Clearly, there exists a unique pair of numbers 0 < a < b < oo such that
P € (a,b)) = X and E(£|§ € (a,b)) = 1; there exists a unique pair of numbers
0 < ¢ <d< oo such that P(§ ¢ (¢,d)) = X and E(£|€ € (¢, d)) = 1.

Lemma 4.5. (i) If f € £(0,00) is convez, then

A pflz) = : f(zy)Q(dy), = € (0,00), (4.13)
Bypf(z) = {—W}, x € (0,00), (4.14)

where Q = Law(£|€ € (a,b)).
(ii) If f € L£(0,00) is concave, then Ay pf and Bypf have the same form with a,b
replaced by c,d and the sign “€” replaced by “¢”.

Proof. We will prove only (i). First, we verify (4.13). Without loss of general-
ity, x = 1. Let us first assume additionally that f is strictly convex. As shown in
the proof of Theorem 4.2 (iii), we can find Z, € D, p such that EpZ, X = 1 and
EpZ.f(X) = A\ pf(1), where P = Law . Let us prove that Z, = A\™'I(X € (a,b)) P-a.s.
Assume the contrary. We can write Z, = ¢(X). Then there exist 0 < oy < g < g < oy
such that

P({QO > 0} N ((1/1,(1/2)) > 0,
P({e <A} N (aza3)) >0,
P({p >0} N (asz, aq)) > 0.

For hy, ho, hs € [0, A7Y], let us set

p(z), x ¢ (o, ol
) — o(x) ANhy, x € (a1, a9,
#(@) o(x) V hy, x € (g, as),
o(x) ANhs, x € (as, ).

We can find hq, ho, hy such that

P{p < ¢} N (a1, a9)) >0,
P{$ > ¢} N (ag,a3)) >0,
P{p <p}n(as,a4)) >0,
Erp(X) = Epp(X) =1,
EpX3(X) = EpXo(X) = 1.
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Consider the affine function J? that coincides with f at a; and az. The above equal-
ities imply that Ep(¢(X) — @(X))f(X) = 0. Furthermore, as f is strictly convex,
f < f on (ag,a), J? > f on (ag,a3), and J? > f on (as,a4). Consequently,
Ep(3(X)—@(X))f(X) < 0. Thus, we have found Z = @(X) € Dy p such that EpZX =1
and EpZf(X) < EpZ,f(X). But on the other hand, it follows from (4.9) that

Aypf(l)= inf EZf(X), (4.15)
ZeDNMy p
where M = {Z : EZX = 1}. The obtained contradiction shows that

Z,=\X"'I(X € (a,b)) P-a.s., which yields (4.13) for a strictly convex f.

Let us now prove (4.13) in the general case. Take Z, = A" 'I[(X € (a,b)). Find a
strictly convex function f of linear growth. Then the function f. = f + ef is strictly
convex and, in view of (4.15), the result proved above shows that EpZf.(X) > EZ, f.(X)
for any Z € DN M, p. Passing on to the limit as € | 0, we get EpZf(X) > EpZ,f(X)
for any Z € DN M, p. Employing (4.15) once more, we get (4.13).

Let us now prove (4.14). Without loss of generality, z = 1. Consider the function

g(y) =inf{z: (y,2) €e G(1)} = inf{EZf(X): Z € Dy p, EpZX =y + 1},

where G(z) is defined by (4.7). Repeating the proof of (4.13), we check that g = gj0g5",
where

G(y) = A / " i@ Pr), ye (0,1 ),

ay

qy+X
wly) =" [ oP(de). e 0.1 3)

ay

and g, is the y-quantile of P. Due to (4.10),

B (1) = G() = {0} = { -TE=LOL

4.2 Pricing and Hedging

Let (2, F, (Fn)n=o...n,P) be a filtered probability space. Let

.....

D, ={Z € L°(F,): Z >0, E(Z|Fo_1) = p((0,1]),
and E((Z —2)"|F,1) <P,(z)Vz €eR,}, n=1,...,N,

where p is a positive measure on (0,1] with p((0,1]) < 1 and @, is given by (4.4).
Thus, the risk measure we consider is the dynamic Weighted V@R (see [10]).® Let
(Sn)n=0,..~ be a d-dimensional adapted process. We will assume that there exists

.....

=U,...,

we assume that, for each n = 1,..., N, there exists a family of probability measures
(Po(%,9))(@y)ep,_, On D, satisfying conditions (4.5), (4.6) with Dy, D; replaced by
D,,_1, D, and such that

LaW(Sn, @n |fn,1) = Pn(Snfl, @nfl) a.S.

8In view of (4.2)—(4.4), this is a straightforward dynamic extension of the static Weighted V@QR.
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We will consider a stream of cash flows of the form F,, = f,,(S,,0,), n=0,..., N, where
fn € L(Dy,).

Define the functions (gn)n=o,..~ by: gn =0, gn—1 = A, p,(fn + gn) (due to Theo-
rem 4.2 (i), these functions are correctly defined).

Theorem 4.6. (i) We have

V,(F)
Ho(F)

9n(Sn,©,), n=0,...,N,
Lo(fn_l, BM,Pn(fn + gn)(Sn_l, 671—1))7 n = ]_, ey N

(ii) If p((0,1)) > 0, supp Py(z,y) N D, is strongly connected for any n,z,y, and
Lawp, (2.4 (h, X) is continuous for any n,z,y, and h € R? \ {0}, then each H,(F) is a
singleton.

Proof. (i) Denote Gy(z,y) =0,

Gno1(z,y) = cl{Epn(m’y)Z(X — 2, (fu +92)(X,Y)) :
ZGD#,PH(m,y)}a (l‘,y) GDn—la nzl,...,N.

Let us prove, going backwards from N to 0, that G, (F) = G,(S,,0,) and
a,(F) = gu(Sn,0,), where G, (F) and a,(F) are defined by (3.3) and (3.4). Suppose
that these equalities are true for n and let us prove them for n — 1. As shown in the
proof of Theorem 4.2, the map D,_1 3 (x,y) — G,_1(z,y) is continuous, and therefore,
Gpn-1(Sn—1,0n_1) is F,_i-measurable. It is known that wu,(X) depends only on the dis-
tribution of X, so that there exists a functional u, defined on distributions such that
u,(X) =u,(Law X), X € L. We have

(p(hhhz)(gn—l(F)) = essinf E(Z(<h17 ASH) + h2(fn + gn)(sna @n)) |fn*1)

7Dy
= Uy (Lawp, (z4)((h1, X — @) + ha(fn + 92) (X, Y))) (29)=(Sn-1,00-1)
= uu,Pn(:v,y)(<hla X —x) + ho(fu + gn)(X,Y))
= @(hl,hz)(Gn—l(Sn—la Gn—l))a hl € Rd’ h2 € R’

where ¢ is the support function given by (a.2). The first equality here follows
from Lemma A.4 and the second one follows from [10; Lem. 2.5]. Consequently,
G, (F) = G, 1(Sh-1,0,1) as. The equality a, (F) = g,-1(Sn_1,0, 1) follows
from (4.9).

Now, the desired result follows from Theorem 3.2 combined with (4.9) and (4.10).

(ii) This statement is a consequence of (i) and Theorem 4.2. O

Remark. The vector of sensitivities at time n of the portfolio to the underlying assets
might be defined as A, = (%)izl 4+ Suppose that H, consists of a unique
element H, . Then it is not true that H, = —An This is in contrast with the continuous-
time situation, where this equality is true in some natural models (see [21]). However,
under some conditions, a discrete-time model should “converge” to a continuous-time
limit, and then the above equality should approximately be true. O

Example 4.7 (GARCH). Let p be such that p((0,1)) > 0 and u,(—&) > —oc for
any lognormal random variable ¢ (as an example, u = §, with A € (0,1) satisfies this
condition). Let S be a d-dimensional adapted strictly positive componentwise process
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and © be a process with values in the set of symmetric positively definite d x d-matrices
such that

Law(lnSn|.7:n_1) :N(lnSn_l —@n_1/2,®n_1), n = 1,...,N,
0% =aAInS:AlnS) + p0Y  +T% ij=1,...,d, n=1,...,N,

where A is the Gaussian distribution, In.S, is taken componentwise, @:l_l = @::_1
a,f >0, a+ 5 <1,and I is a symmetric strictly positively definite matrix (we subtract
the term ©,, /2 from In S, ; in order for the process S to be a martingale; this, in turn,
is needed for the NGD condition).

To embed this model in the framework of this subsection, take D, = (0,00)¢ x M,
where M C R¥Y is the set of symmetric strictly positively definite d x d-
matrices (note that any ©, has this property), and P,(z,y) = Law(eé,n), where
Lawé = N(Inz — 5/2,y), 0¥ = a&'¢&? + By + T, and € is taken componentwise.
Let us check that all the assumptions of this subsection are satisfied.

Fix n, (z,y) € D,, and ¢ > 0. There exists a lognormal (possibly,
shifted) random variable £ such that Law¢ stochastically dominates Lawp, () |X|
for any (z)vy') € B.(z,y) N Dy—1. Then Law&I(¢ > k) stochastically dominates
Lawp, 2y | X|1(|X] > k), so that

0 >y pary) (=X (| X]| > k) > uu(=E1(E > k) m 0.

The convergence here follows from [7; Prop. 2.6]. Thus, we have checked (4.5).
Condition (4.6) follows from the line

u#’pn(m’y)“h,X— 1‘>) < Epn(m’y)<h,X— :E> = 0, hERd\{U}, (:E,y) EDn_l, n = 1, ...,N.

The inequality here follows from the condition p((0,1)) > 0 and the non-degeneracy of y.
Finally, the conditions of part (ii) of the above theorem are obviously satisfied. In
particular, H, (F') is a singleton for any F' of the form described above. O

Remark. The model of the above example is GARCH(1,1). GARCH(p, q) model
can also be embedded in the framework of this subsection simply by extending the pro-
cess O. a

4.3 Convex and Concave Payoffs

Let (2, F, (Fn)n=0....n, P) be a filtered probability space and D,, be the same as in the
previous subsection with p = ), where A € (0,1), i.e. the risk measure we consider is
the dynamic Tail V@R. Let S, = Sge™*+1 where S, is strictly positive and 7, is in-
dependent of F,, ; for any n. We assume that each 7, has a continuous distribution with
supp Law 7, = R and uy(e™) <1 < —uy(—e™). Let F,, = f,,(S,), where f, € L£(0,00).

Clearly, for each n, there exists a unique pair of numbers 0 < a, < b, <
such that P(e™ € (an,b,)) = A and E(e™|e™ € (an,b,)) = 1; for each n, there ex-
ists a unique pair of numbers 0 < ¢, < d, < oo such that P(e™ ¢ (¢,,d,)) = A
and E(e™|e™ ¢ (c,,d,)) = 1. Let n},...,n)y be independent random variables with
Law 7!, = Law(n, |7, € (Ina,,Inb,)); let n{,...,n% be independent random variables
with Law 7)) = Law(n, |7, ¢ (Inc,,Ind,)).
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Theorem 4.8. (i) Suppose that each f, is conver.® Then V., (F) = g,(S,), where
gn(x) = gn(ln 1‘);

N
Gn(@)= D Efalz i+ +1l), zE€R n=0,...,N,
m=n+1
and fo(z) = fo(e®). The set 1, (F) consists of a unique element

H —_ (fr 4 9n) (0nSn_1) = (fn + gn)(@nSn_1)
o (bn - an)Snfl ’

n=1,...,N.

If moreover f,, is strictly convex for some ny, then'®
X, (F;DNM)={\'I(n, € (Ina,,Inb,))}, n=1,... n.

(ii) Suppose that each f, is concave. Then V, (F), H,(F), and X,(F;DN M) have
the same form with 0., a,, b, replaced by 0, ¢y, dy, and the sign “€” replaced by “¢ ”.

Proof. We will prove only (i). The representations for V, (F) and #, (F) fol-
low from Lemma 4.5 combined with Theorem 4.6. Let us prove the representation for
X, (F; DN M). Fix n < ng. Applying Theorems 3.2 and 4.6, we can write

essinf E(Z(fn + 91)(Sn) | Fn-1)

ZEDpNMy

= essinf E(Z(F, + u,(F;DNM))|Fnzr)

Z€DpNMy,
=up, 1 (F;DNM)=V, (F)=u,1((H,AS) + F)
= essinf E(Z(H,,AS, + F,, + u,((H, AS) + F)) | F,_1)

7€Dn
= essinf E(Z(H,,AS, + (fn + 9)(Sn)) | Fa-1),

Z €Dy

where H = (H,,)n=1,..n. Consequently,

Xn(FQ Dn M) = argessmin E(Z(fn + gn)(Sn) |-7:n—1)
ZEDnN My,

C argessmin E(Z(H,,AS,, + (fn + 9)(Sn)) | Fn-1)

Z €Dy

= argessmin E(Z¢(Sn—1,&n) | Fn-1),

Z €Dy

where &, = e" and

$(@ry) = (fo+ ga)(ay) — SoF 9D = ¥ gu)(@nz) (5,

bn_an

z,y € (0,00).

Going backwards from ny to n, we check that g, is strictly convex. Thus, v is strictly
convex in y. Obviously, ¥ (x,a,) = ¥(x,b,) for any z. Due to the strict convexity,

9n particular, this assumption is satisfied if F' corresponds to a call option, in which case f, = 0 for
n=0,....,N—1and fn(z)=(z - K)*.

10Recall that, according to the results of Section 3, the sets X,(F;D N M) are needed to calculate
price contributions, market-adjusted risk contributions, and market-adjusted capital allocations.
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Y(z,y) < Y(z,a,) for y € (an,b,) and Y(z,y) > ¥(zx,a,) for y ¢ |a,, b,]. Now, it follows
from [10; Lem. 4.5] that

argessmin E(Z9(Sn_1, &) | Fno1) = {A1(& € (an,b,))} = {2 (1, € (Inay,,Inb,))}.

Z €Dy

As X, (F; DN M) is non-empty, we get the desired representation. O
Remarks. (i) As seen from the above proof, the inclusion
{\"'(n, € (Ina,,Inb,))} C X, (F;DNM), n=1,...,N

employs only the convexity of f,,, while the strict convexity is needed only for the reverse
inclusion. A similar remark applies to concave functions.

(ii) If each f, is strictly convex, then the measure Q appearing in formula (3.8) for
the price contribution gets a very simple form: Q = P(- |7, € (Ina,,Inb,) Vn). A similar
remark applies to concave functions.

(iii) The results of this subsection can be extended to p = ady + (1 — «)d; (this risk
measure is important for passing to the continuous-time limit). One should redefine a,,, b,
using the equalities P(e™ € (ay,b,)) = A, aE(e™]|e™ € (a,,b,)) + (1 — a)Ee™ =1 and
redefine 1/, by Law )/, = o Law(n,, |n, € (Ina,,Inb,))+(1—a) Lawn,. Then, for convex f,,
the representations for V. (F') and H,(F') remain the same, while the representation for
Xo(F; DN M) gets the form

X (F;DNM)={a " I(n, € (Inay,Inb,))+1—a}, n=1,... n.

A similar remark applies to concave functions. O

4.4 Numerical Algorithm

Consider the model of Subsection 4.2 and assume that each D, is finite and
Fun = 0(Sk, O : k < n). Define the real-valued functions (g)n=o,. n and the set-valued
functions (Hp)n=o,..N—1, (Xn)n=o,..N~—1 by: gy =0,

gn—1(a) = h;&a;(eR [q -\ Z (q — Yn(a,b, b)) p,(a, b)} ., a€ Dy,
H, 1(a)={heR*:3¢geR: (szL, q) € M, 1(a)}, a€ D, 4,
Xo-1(a) = {(z(0)sep, 10 < 2(0) <A™ Y 2(O)palarb) = 1,

beDy

2(b) = 0if ¢ (a,b,h) > g, 2(b) = A" if hu(a. b, h) < g,
and PTIRd Z (b - a)z(b)pn(a, b) = 0}: a € anla

P
where pa(a,) = Pal(a)({0}).
tn(a,b,h) = (h,prga(b — a)) + fn(b) + gn(b), a € D, 1, b€ D,, he€ ]Rd,
Maa(a) = argmna [g =3 30— (et mlab)] . ae D

d
heR®, geR beD,,
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and in the definition of X, i(a), (h,q) is an arbitrary element of M, (a) (due to
Lemma 4.10, M,,_1(a) # 0 and X,_1(a) does not depend on the choice of (h,q)). Let
us remark that typically the first four conditions in the definition of X, (a) already
define it uniquely, and in this case (due to non-emptiness of X, i(a)) the condition
prra Y. (b —a)z(b)p,(a,b) = 0 can be dropped.

In the statement below, we use the convention: an JF,-measurable random variable Z
is written as a function of n arguments: Z(ag,....an) = Z|{(50,00)=a0,...(Sn,0n)=an} - W€
use the notation A4, (a) = {(S,,0,) = a}.

Proposition 4.9. We have

V., (F)=gn(a)on Ay(a), a€ D, n=0,...,N,
H,(F)={HeL’(F, 1):H,€H, i(a)on A, (a)VYa€D, 1}, n=1,..,N,
Xn(F,MﬂD} = {ZGLU(fn) lZ(ao, veey A1, ) Ganl(Clnfl) VakEDk}, n = 1, ceey N.

Proof. This statement follows from Theorem 4.6 combined with Lemma 4.10. a
The lemma below goes back to Pflug [23], Rockafellar and Uryasev [24].

Lemma 4.10. Let (2, F,P) be a probability space, A € (0,1), n be an integrable ran-
dom variable, and & be a d-dimensional integrable random vector such that ux({(h,&)) <0

for any h € RE\ {0}. Denote ¥(h) = (h,&) +n, h € RY. Then

sup ux(¥(h)) = sup (¢— A 'E(qg—¥(h)") < o, (4.16)
hERd heR4, gcR
argmax uy (¥ (h)) = {heR?:3g€R: (h, q) € argmax(q—A"'E(g—¥(h))")} #0. (4.17)
heRd heR4, geR

Furthermore, for any (h,q) € argmax, ,(¢ — A'E(q — ¥(h))"), we have

argmin EZn={Z € Dy:Z =0a.e. on {¥(h) > q},
Z€eDy,EZE=0 (4.18)
Z =X1ae. on {¥(h) <q}, and EZE =0} £ 0.

Proof. Fix h and denote f(q) =q — A"'E(¢ — ¥(h))". It follows from the equalities
[l q) =1=X"P(U(h) <q), fi(g) =1—X"'P(¥(h) < ¢) that the maximum of f(q) is
attained exactly at the set of A-quantiles of W(h). For any ¢ from this set, we have

¢ = ATE(q = U(h)" =q = AT'P(T(h) < q) + ATEU(MI(T(h) < q) = un(T(h)).

In the last equality, we used a well-known representation of wuy; see, for example, [9;
Prop. 2.7]. This proves the equalities in (4.16), (4.17).
It follows from the relation

sup nux (W (h)) = sup ur((h, &) +n"'n) —— sup ur((h, £)) <0
|h|=n |h|=1 n=00  |p|=1

that sup>, ur(¥(h)) —— —0. As uy(¥(h)) is continuous in h, it attains its maxi-
mum.

Let us now check (4.18). In view of Lemma 4.3, its right-hand side is
argmingcp, EZW(h) N {Z : EZ{ = 0}. Now, the equality in (4.18) follows from the
line

ux(U(h)) = maxuy((h', &) +n) = inf  EZp,

h'€R? Z€Dy,EZE=0
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which is, in turn, a consequence of Theorem 3.2. The non-emptiness of the left-hand side
of (4.18) follows from a compactness argument. O

Remark. One can provide a discretized version of the results of Subsection 4.2 directly,
without using the Pflug-Rockafellar-Uryasev method, i.e. instead of the problem
q— )‘_1 Z (q - ¢n(aa ba h))+pn(a7 b) ———— max, (419)

heRe, geR
be Dy, €Reac

one can consider at each point a € D,_y the problem u, p, (o) (¥n(a, h)) —— max, where
heR

U, (a, h) is a random variable taking the values v, (a, b, h) with probabilities p,(a,b). This
would allow one to consider not only the dynamic Tail V@R, but the general dynamic
Weighted VQR. However, the use of the Pflug-Rockafellar-Uryasev method has the fol-
lowing advantages: it leads to simpler formulas; it provides explicitly the level ¢ needed
to define X, 1(a); it leads to a convex optimization problem (4.19), to which standard
numerical methods can be applied. O

5 Conclusion

Let us discuss some issues of the practical application of the proposed technique. Suppose
that a company has a large portfolio of European options, each option depending only
on the value of an underlying asset at some fixed date. Then, within the Markov model
(this class of models includes virtually all the natural ones), its risk-based price process
is given by ¢,(S,,©,), where the functions g, admit closed-form expressions in some
particular cases and a numerical calculation procedure in the general case. The number of
computations depends linearly on the number of contracts in the portfolio. Furthermore,
if the basic risk measure is the dynamic Tail V@R, then this procedure can be simplified
and accelerated by employing the Pflug-Rockafellar-Uryasev method.

If a new small subportfolio is added to the portfolio, then the change in the price
is well approximated by the price contribution. In typical situations, it is given simply
by the expectation of the cumulative cash flow of the subportfolio with respect to the
extreme measure of the portfolio (a numeric procedure for calculating this measure has
also been provided). This allows one not to repeat the whole procedure for calculating the
functions g, each time the portfolio is rebalanced; this procedure can be performed only
periodically when the portfolio has essentially been changed. Furthermore, the technique
of price contributions allows one to price also portfolios including path-dependent options
provided that the part of these options is small: the price contributions of these options
can be estimated using the Monte Carlo method.

Suppose now that, apart from the portfolio of options, the company has a portfolio
of primary assets, which are perfectly liquid. Then the market-adjusted risk of the joint
portfolio is calculated by the same backward procedure as the one used for the price, with
the only difference at the last step (passing on from time 1 to time 0). When calculating
the risk at time 1, one should not repeat the whole procedure (provided that the illiquid
part of the portfolio remains unchanged); only passing from time 2 to time 1 should
be done anew. All the remarks concerning price contributions are carried over to risk
contributions.

The described method of risk measurement differs from the classical one, in which
the sensitivity coefficients are first calculated and then risk is estimated. Here, the same
procedure (with the only difference at the last step) applies both to pricing and to risk
measurement.
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Appendix

Let C be the set of non-empty convex compacts in R%*! endowed with the Hausdorff
metrics
p(C1,C2) = sup |[lzg — 22| (a.1)

Tn€Ch

and the corresponding Borel o-field. Below ¢, denotes the support function

op:C>C +— {Bneiél<h, z), he R (a.2)
and «, [ are the maps defined in (3.1), (3.2).

Lemma A.1. Let (2, F,P) be a probability space and C : Q — C be a measurable

map such that 0 € prra C' a.s. Then, for any € > 0, there exists a measurable map
h:Q— R such that ©;,1)(C) > (C) — ¢ a.s.

Proof. First, we prove the statement for a non-random C such that 0 belongs to
the interior of prrs C. By the Hahn-Banach theorem, there exists h € R such that
(h, (0,(C))) = ¢ (C). Clearly, h*™*! > 0, so that, without loss of generality, h*! =1,
Taking h = prga h does the job.

For a general non-random C', denote by C,, the closed n~!-neighborhood of C'. Then
a(Cp) = a(C), vn1)(Crn) < @n1y(C), and the statement we need follows from the one
proved above.

Consider now a random C'. Due to [10; Lem. A.1], the function ¢, 1)(C(w)) is mea-
surable in the pair (h,w). The map C 5 C' — a(C) € (—o0, 00| is lower semicontinuous
and therefore measurable. Hence, a(C(w)) — ¢ is measurable in w. Thus,

A= {(h,w): o1 (C(w)) > a(C(w)) — e} € B(R?Y) x F.

The measurable selection theorem, combined with the result for non-random C', yields
the desired statement. O

Lemma A.2. Let (2, F,P) be a probability space and C : Q — C be a measurable
map such that 3(C) # O a.s. Then there exists a measurable map h : Q — R¢ such that
h e p(C) a.s.

The proof is similar to the proof of Lemma A.1.

Definition A.3. Let (X))yeca be a family of R -valued random vectors. The essen-
tial closed convezr hull of (X))xea is a C-valued random element C' with the properties:

(a) for any A, X, € C as.
(b) if C" is another random element with this property, then C' C C" a.s.

We use the notation C' = essconvyecpa X, .

Lemma A.4. If esssup, | X,)\|| < oo, then essconvy X exists. Moreover, for any
= LO(Rd—H),
©n (esi(éoAﬂV X)) = eiseijl\lﬂh, X))- (a.3)

Proof. The proof of the existence part and (a.3) for a non-random h can be found
in [10; Appendix]. Clearly, (a.3) remains valid for simple h. Passing on to the limit, we
get (a.3) for an arbitrary h. O
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