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Abstrat. We study some properties of a ontinuous loal martingale stoppedat the �rst time its range (the di�erene between the running maximum and min-imum) reahes a ertain threshold. The laws and the onditional laws of its value,maximum, and minimum at this time are simple and do not depend on the loalmartingale under question. As a onsequene, the prie and hedge of options whihmature when the range reahes a given level are both model-free within the lassof arbitrage-free models with ontinuous paths, whih makes these produts veryonvenient for hedging.1 IntrodutionLet (St)t�0 be a ontinuous loal martingale on a �ltered probability spae (
;F ; (Ft);P).We assume that F0 is trivial. Consider its running minimum and maximummt = infu�tSu; Mt = supu�t Su; t � 0and de�ne the range proess as Rt =Mt �mt; t � 0:�We are thankful to the volume Editor and to the Referee for the areful reading of the manusriptand useful suggestions. We thank David Hobson for having suggested a problem that atually was thestarting point for this investigation. The problem (whih the Reader is invited to solve before reading thepaper) is as follows. There are N people sitting around a round table. The people are numbered 1; : : : ; Nlokwise. A plate arrives and the �rst person gets it. After that, the plate performs a symmetri randomwalk, i.e. eah person reeiving the plate transfers it to one of his neighbors with probability 1=2. Therandom walk stops at the �rst time everyone has touhed the plate. Consider the funtionp(n) = P(the n-th person is the last to touh the plate); n = 2; : : : ; N:The question is at whih point/points p attains its maximum.1



De�ne the stopping time � = infft � 0 : Rt � Lg;where L > 0 is a given threshold. We will be interested in the unonditional and on-ditional laws of the random variables S� and M� . Below we denote by Æa the Diradelta-mass onentrated at a point a; by IA we denote the indiator of a set A. We havethe following result; statement (ii) is atually known and an be found in [2; 5.0.4℄.Theorem 1.1. Assume that � is �nite almost surely.(i) The distribution Law S� is given by(LawS� )(dx) = L�2jx� S0jI(S0�L;S0+L)(x)dx:(ii) The distribution LawM� is given by(LawM� )(dx) = L�1I(S0;S0+L)dx:(iii) The onditional distribution Law(S� j Ft) on the set ft < �g is given by(Law(S� j Ft))(dx) = L�1(Mt � St)ÆMt�L(dx) + L�1(St �mt)Æmt+L(dx)+ L�2(St � x)I(Mt�L;mt)(x)dx+ L�2(x� St)I(Mt;mt+L)(x)dx:(iv) The onditional distribution Law(M� j Ft) on the set ft < �g is given by(Law(S� j Ft))(dx) = L�1(St �mt)Æmt+L(dx) + L�1(Mt � St)ÆMt(dx)+ L�1I(Mt;mt+L)(x)dx:Remark 1.2. Point (ii) easily follows from (i) if one notes thatM� = (S� + L if S� � S0;S� if S� > S0:Similarly, (iv) is an easy onsequene of (iii) sine on ft < �g, we haveM� = (S� + L if S� � St;S� if S� > St:As m� = M� � L, we see that from (i) one an reover the whole Law(S� ; m� ;M� ), whilefrom (iii) one an reover Law(S� ; m� ;M� j Ft).The above theorem might be given an interesting �nanial appliation. Let (St)t�0desribe the prie proess of an asset. Imagine an option that pays out the amount f(S�),where � is the same as above and f is a given funtion (e.g., f(x) = (x � K)+). Then,as a orollary of the above result, we get the prie of this option in any arbitrage-freemodel with ontinuous paths. It is given by the theorem below, where we are providingthe hedge as well.
2



Theorem 1.3. Assume that the risk-free rate is zero and f is integrable on any om-pat interval. Assume also that � < 1 a.s. and the model is arbitrage-free in the sensethat there exists an equivalent measure, under whih S is a martingale.1(i) For any equivalent martingale measure Q, the prie V0 = EQf(S�) is given byV0 = L�2 Z S0+LS0�L jx� S0jf(x)dx:(ii) For any equivalent martingale measure Q, the orresponding prie proess Vt =EQ[f(S� ) j Ft℄ is given byVt = L�1(Mt � St)f(Mt � L) + L�1(St �mt)f(mt + L)+ L�2 Z mtMt�L(St � x)f(x)dx+ L�2 Z mt+LMt (x� St)f(x)dx on ft < �gand Vt = f(S� ) on ft � �g.(iii) The hedge H is given byHt = I(t < �)��L�1f(Mt � L) + L�1f(mt + L)+ L�2Z mtMt�L f(x)dx� L�2Z mt+LMt f(x)dx�; t � 0;i.e. Vt = V0 + Z t0 HudSu; t � 0:We see that the prie and the hedge do not depend on the equivalent martingalemeasure and are thus model-independent within the lass of arbitrage-free models withontinuous paths. These inlude, in partiular, the Bahelier model, the Blak-Sholes-Merton model, the loal volatility models as well as the stohasti volatility models.What is more important, the prie and the hedge admit a simple analyti form. In thoserespets, options on the range have similarities with options with the payo� f(S�), where� = infft � 0 : hSit � Lg (for more information on suh options, see [1℄).Let us remark that on the set ft � �g, Vt has the form v(St; mt;Mt), while Ht has theform h(mt;Mt), where h(m;M) = �v(S;m;M)�S ;i.e. H is the delta-hedge. The funtion v is linear in S, so that h does not dependon S, whih means that the hedge remains onstant until the prie St reahes its runningmaximum or running minimum. This implies that the gamma of the option is zero.However, eah time when S breaks through its running maximum or minimum, the hedgeis updated (as Mt or mt hanges). Loosely speaking, one an say that the option has anon-zero \right-hand gamma"�2v(M + ";m;M + ")�"2+ = L�2f(M)� L�2f(M � L)� L�1f 0(M � L)1All the results remain the same if the word \martingale" is replaed by \loal martingale".3



at the time when the prie breaks through its running maximum and a non-zero \left-handgamma" �2v(m+ ";m+ ";M)�"2� = �L�2f(m+ L) + L�2f(m) + L�1f 0(m + L)at the time when the prie breaks through its running minimum. Here by �2=�"2+ (resp.,�2=�"2�) we denote the right-hand (resp., left-hand) seond derivative.Thus, the hedge should be updated only at the times when the prie breaks throughits running maximum or minimum. As time grows, these \break points" appear moreand more rarely (for example, in a random walk model, the number of suh points in theinterval [0; N ℄ is of order N1=2). This makes the produt \quite hedgeable".Let us �nally remark that items (ii) and (iv) of Theorem 1.1 an also be given a �nan-ial interpretation. Consider the same setting as before and imagine an option that paysout the amount f(M� ). For these options, under the same assumptions as in Theorem 1.4,the following result holds.Theorem 1.4. (i) For any equivalent martingale measure Q, the prie V0 = EQf(M� )is given by V0 = L�1 Z S0+LS0 f(x)dx:(ii) For any equivalent martingale measure Q, the orresponding prie proess Vt =EQ[f(M� ) j Ft℄ is given byVt = L�1(St �mt)f(mt + L) + L�1(Mt � St)f(Mt) + L�1 Z mt+LMt f(x)dx on ft < �gand Vt = f(M� ) on ft � �g.(iii) The hedge H is given byHt = I(t < �)[L�1f(mt + L)� L�1f(Mt)℄; t � 0:2 ProofsWe will prove Theorems 1.1 and 1.3. Theorem 1.4 is proved in the same way as Theo-rem 1.3. We are starting with an auxiliary lemma, whih is a generalization of the \plateproblem" mentioned at the beginning of the paper.Lemma 2.1. Let (Xn)n=0;1;::: be a standard symmetri random walk on Z. DenoteRn = maxi�n Xi �mini�n Xi; n = 0; 1; : : :and let � = inffn : Rn = Ng, where N is a �xed natural number. ThenP(X� = k) = jkjN(N + 1) ; k = �N; : : : ; N:4



Proof. Denote mn = mini�nXi. For k 2 Z, denote Tk = inffn : Xn = kg. Due to themartingale property of X,P(mTk � l) = P(Tl < Tk) = kk � l ; l � 0 < k:Consequently,P(mTk = l) = P(mTk � l)� P(mTk � l � 1) = k(k � l)(k � l + 1) ; l � 0 < k:As a result, P(X� = k) = P(mTk = k �N) = kN(N + 1) ; k = 1; : : : ; N:By the symmetry, we get the desired statement for k = �N; : : : ;�1. 2Proof of Theorem 1.1. In view of Remark 1.2, we have to prove only (i) and (iii).(i) Step 1. Let (
0;F 0; (F 0t)t�0;P0) be another probability spae with an (F 0t)-Brownianmotion B. Consider the enlarged �ltered probability spae de�ned bye
 = 
� 
0; eF = F � F 0; eFt = Ft � F 0t; eP = P� P0:Then the proess eSt = St^� + Z t0 I(s � �)dBs; t � 0is an ( eFt;P)-ontinuous loal martingale that oinides with S up to the time � andsatis�es hSi1 = 1. It is suÆient to prove the desired statement for eS instead of S.Hene, we an assume from the outset that hSi1 =1.Step 2. For N 2 N , de�ne the stopping times �N0 = 0,�Nn+1 = inf�t � �Nn : jSt � S�Nn j = N�1L	; n 2 N :Due to the assumption hSi1 =1, all the stopping times �Nn are �nite a.s. It follows fromthe optional stopping theorem that the sequeneY Nn = S�Nn ; n = 0; 1; : : :is a symmetri random walk (multiplied by N�1L). ConsiderRNn = maxi�n Y Ni �mini�n Y Ni ; n = 0; 1; : : : ;�N = inf�n : RNn = L N � 1N �;�N = �N�N :It is easy to see that L N � 1N � R�N � L:This yields the onvergene S�N ! S� a.s. Hene, the onvergene in law also holds.Employing Lemma 2.1, we omplete the proof.5



(iii) Using the same argument as in (i), Step 1, we an assume that hSi1 = 1. Fixt � 0 and denote eRs = supt�u�sSu � inft�u�sSu; s � t;e� = inffs � t : eRs = Lg:The assumption hSi1 = 1 ensures that e� < 1 a.s. For a.e. ! 2 ft < �g, the on-ditional distribution LawQ(Su; u � t j Ft)(!) is the distribution of a ontinuous martin-gale. Applying now (i), we see that, for a.e. ! 2 ft < �g, the onditional distributionQ! = LawQ(Se� j Ft)(!) has the formQ!(dx) = L�2jx� St(!)jI(St(!)�L;St(!)+L)(x)dx:A diret analysis of the path behavior shows that
S� = 8>>>>>>>><>>>>>>>>:

mt + L if mt + L < Se� < St + L;Se� if Mt < Se� < mt + L;Mt � L if St < Se� < Mt;mt + L if mt < Se� < St;Se� if Mt � L < Se� < mt;Mt � L if St � L < Se� < Mt � L:This yields the result.Proof of Theorem 1.3. Statements (i) and (ii) follow diretly from Theorem 1.1, so weonly have to prove (iii).Step 1. Suppose that S is a Brownian motion. The proess V remains the same ifthe �ltration (Ft) is replaed by the natural �ltration of S, so we an assume from theoutset that (Ft) is the natural �ltration of S. Aording to the representation theorem forBrownian martingales (see [3; Ch. V, Th. 3.4℄), there exists a preditable proess (Gt)t�0suh that Vt = V0 + Z t0 GudSu; t � 0:Fix v � 0 and de�ne the stopping time �v = inffu � v : Su = mv or Su =Mvg. Considerthe proesses eGt = GtI(t � �v); t � 0;eHt = HtI(t � �v); t � 0;eVt = V0 + Z t0 eGudSu; t � 0;eXt = V0 + Z t0 eHudSu; t � 0:On fv � t � � ^�vg, the value Vt is an aÆne funtion of St, and the slope of this funtionis exatly Hv. Therefore,eVt � eVv = Hv(St � Sv); v � t � � ^ �v:6



Obviously, Ht is onstant on fv � t � � ^ �vg, so thateXt � eXv = Hv(St � Sv); v � t � � ^ �v:As both proesses eV and eX are stopped at the time � ^ �v, we see thateVt � eVv = eXt � eXv; t � v:From this we dedue that eG = eH ��P-a.e. on [v;1)�
, where � denotes the Lebesguemeasure.Thus, we have proved that G = H �� P-a.e. on every stohasti interval of the formf(!; t) : v � t � �(!) ^ �v(!)g. By the de�nition of H, Ht = 0 on ft � �g. As V isstopped at the time � , we an assume from the outset that Gt = 0 on ft � �g. Thus,G = H �� P-a.e. on every stohasti interval f(!; t) : v � t � �v(!)g. Obviously,f(!; t) : mt(!) < St(!) < Mt(!)g � [v2Q+f(!; t) : v � t � �v(!)g: (2.1)It is seen from the form of the joint law of (St;Mt) (see [3; Ch. III, Ex. 3.14℄) that, forany t � 0, P(St =Mt) = 0; similarly, P(St = mt) = 0. By the Fubini theorem,�� P�(!; t) : St(!) = mt(!) or St(!) =Mt(!)� = Z 10 P(St = mt or St = Mt)dt = 0:Thus, the set on the left-hand side of (2.1), and hene, the set on its right-hand side, havea omplete � � P-measure. We onlude that G = H �� P-a.e. This yields the desiredresult.Step 2. Let us now onsider the general ase. Without loss of generality, S0 = 0.De�ne the funtionsg(S;m;M) = L�1(S �m)f(m + L)� L�1(M � S)f(M � L)+ L�2 Z mM�L(S � x)f(x)dx + L�2 Z m+LM (x� S)f(x)dx;h(m;M) = �L�1f(M � L) + L�1f(m+ L) + L�2 Z mM�L f(x)dx� L�2 Z m+LM f(x)dx:We an assume from the outset that S is stopped at the time � .Consider the time hangeTt = inffu � 0 : hSiu > tg; t � 0;where inf ; =1, and de�ne the proess Xt = STt. It follows from [3; Ch. IV, Prop. 1.13℄and [3; Ch. V, Prop. 1.5℄ that the proess X is a ontinuous (FTt)-loal martingale withhXit = hSiTt = t ^ hSi� ; t � 0:Let RX denote the range proess of X. On fhSi� > tg, we have Tt < � , and hene,RXt = RTt < L; on fhSi� � tg, we have Tt = 1, and hene, RXt = R1 = L. This showsthat the stopping time e� = infft � 0 : RXt � Lg oinides with hSi� . Thus, hXit = t ^ e� .In partiular, we see that X is stopped at the time e� .7



Using the same method as in the proof of Theorem 1.1 (i), we onstrut (possibly,on an enlarged probability spae) a Brownian motion eX that oinides with X up to thetime e� . Then e� = infft � 0 : R eXt � Lg, where R eX is the range proess of eX. Thus, Xappears as the Brownian motion stopped at the �rst time its range exeeds L.Now, it follows from the result of Step 1 that on the set ft � e�g we haveg(Xt; mXt ;MXt ) = g(0; 0; 0) + Z t0 h(mXu ;MXu )dXu;where mX and MX are the running minimum and maximum of X. As X is stopped atthe time e� , we onlude that the above equality is valid for all t � 0. Thus,g(STt; mTt;MTt) = g(Xt; mXt ;MXt )= g(0; 0; 0) + Z t0 h(mXu ;MXu )dXu= g(0; 0; 0) + Z t0 h(mTu;MTu)dSTu= g(0; 0; 0) + Z Tt0 h(mu;Mu)dSu; t � 0: (2.2)
The last equality is the time hange for stohasti integrals (the ombination of [3; Ch. V,Prop. 1.5℄ with [3; Ch. IV, Prop. 1.13℄).It follows from [3; Ch. IV, Prop. 1.13℄ that, for a.e. !, the path S(!) is onstant onall the intervals of onstany of hSi(!). Hene, the same is true for m and M . Moreover,�Z �0 h(mu;Mu)dSu�t = Z t0 h2(mu;Mu)dhSiu; t � 0:Hene, for a.e. !, the path of the proess R �0 h(mu;Mu)dSu is onstant on all the intervalsof onstany of hSi(!). The set of points fTt(!); t � 0g oupies the whole R+ exept forthe intervals of onstany of hSi(!), but ontains all the right endpoints of those intervals.Now, we get from (2.2) the desired result. 23 ConlusionWe have established the laws of a ontinuous loal martingale and its maximum at astopping time whih is the �rst time its range reahes a given level. We apply this resultto ompute the prie of options whih mature at that stopping time, only under theassumptions of no interest rate, fritionless market, no arbitrage, path ontinuity, and�niteness of the stopping time. The prie is model-free in the sense that it does notdepend on the prie proess. The option is perfetly hedgeable, the hedge is model-free,and it needs rebalaning only when the urrent minimum or maximum is hanged.
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