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Abstra
t. We study some properties of a 
ontinuous lo
al martingale stoppedat the �rst time its range (the di�eren
e between the running maximum and min-imum) rea
hes a 
ertain threshold. The laws and the 
onditional laws of its value,maximum, and minimum at this time are simple and do not depend on the lo
almartingale under question. As a 
onsequen
e, the pri
e and hedge of options whi
hmature when the range rea
hes a given level are both model-free within the 
lassof arbitrage-free models with 
ontinuous paths, whi
h makes these produ
ts very
onvenient for hedging.1 Introdu
tionLet (St)t�0 be a 
ontinuous lo
al martingale on a �ltered probability spa
e (
;F ; (Ft);P).We assume that F0 is trivial. Consider its running minimum and maximummt = infu�tSu; Mt = supu�t Su; t � 0and de�ne the range pro
ess as Rt =Mt �mt; t � 0:�We are thankful to the volume Editor and to the Referee for the 
areful reading of the manus
riptand useful suggestions. We thank David Hobson for having suggested a problem that a
tually was thestarting point for this investigation. The problem (whi
h the Reader is invited to solve before reading thepaper) is as follows. There are N people sitting around a round table. The people are numbered 1; : : : ; N
lo
kwise. A plate arrives and the �rst person gets it. After that, the plate performs a symmetri
 randomwalk, i.e. ea
h person re
eiving the plate transfers it to one of his neighbors with probability 1=2. Therandom walk stops at the �rst time everyone has tou
hed the plate. Consider the fun
tionp(n) = P(the n-th person is the last to tou
h the plate); n = 2; : : : ; N:The question is at whi
h point/points p attains its maximum.1



De�ne the stopping time � = infft � 0 : Rt � Lg;where L > 0 is a given threshold. We will be interested in the un
onditional and 
on-ditional laws of the random variables S� and M� . Below we denote by Æa the Dira
delta-mass 
on
entrated at a point a; by IA we denote the indi
ator of a set A. We havethe following result; statement (ii) is a
tually known and 
an be found in [2; 5.0.4℄.Theorem 1.1. Assume that � is �nite almost surely.(i) The distribution Law S� is given by(LawS� )(dx) = L�2jx� S0jI(S0�L;S0+L)(x)dx:(ii) The distribution LawM� is given by(LawM� )(dx) = L�1I(S0;S0+L)dx:(iii) The 
onditional distribution Law(S� j Ft) on the set ft < �g is given by(Law(S� j Ft))(dx) = L�1(Mt � St)ÆMt�L(dx) + L�1(St �mt)Æmt+L(dx)+ L�2(St � x)I(Mt�L;mt)(x)dx+ L�2(x� St)I(Mt;mt+L)(x)dx:(iv) The 
onditional distribution Law(M� j Ft) on the set ft < �g is given by(Law(S� j Ft))(dx) = L�1(St �mt)Æmt+L(dx) + L�1(Mt � St)ÆMt(dx)+ L�1I(Mt;mt+L)(x)dx:Remark 1.2. Point (ii) easily follows from (i) if one notes thatM� = (S� + L if S� � S0;S� if S� > S0:Similarly, (iv) is an easy 
onsequen
e of (iii) sin
e on ft < �g, we haveM� = (S� + L if S� � St;S� if S� > St:As m� = M� � L, we see that from (i) one 
an re
over the whole Law(S� ; m� ;M� ), whilefrom (iii) one 
an re
over Law(S� ; m� ;M� j Ft).The above theorem might be given an interesting �nan
ial appli
ation. Let (St)t�0des
ribe the pri
e pro
ess of an asset. Imagine an option that pays out the amount f(S�),where � is the same as above and f is a given fun
tion (e.g., f(x) = (x � K)+). Then,as a 
orollary of the above result, we get the pri
e of this option in any arbitrage-freemodel with 
ontinuous paths. It is given by the theorem below, where we are providingthe hedge as well.
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Theorem 1.3. Assume that the risk-free rate is zero and f is integrable on any 
om-pa
t interval. Assume also that � < 1 a.s. and the model is arbitrage-free in the sensethat there exists an equivalent measure, under whi
h S is a martingale.1(i) For any equivalent martingale measure Q, the pri
e V0 = EQf(S�) is given byV0 = L�2 Z S0+LS0�L jx� S0jf(x)dx:(ii) For any equivalent martingale measure Q, the 
orresponding pri
e pro
ess Vt =EQ[f(S� ) j Ft℄ is given byVt = L�1(Mt � St)f(Mt � L) + L�1(St �mt)f(mt + L)+ L�2 Z mtMt�L(St � x)f(x)dx+ L�2 Z mt+LMt (x� St)f(x)dx on ft < �gand Vt = f(S� ) on ft � �g.(iii) The hedge H is given byHt = I(t < �)��L�1f(Mt � L) + L�1f(mt + L)+ L�2Z mtMt�L f(x)dx� L�2Z mt+LMt f(x)dx�; t � 0;i.e. Vt = V0 + Z t0 HudSu; t � 0:We see that the pri
e and the hedge do not depend on the equivalent martingalemeasure and are thus model-independent within the 
lass of arbitrage-free models with
ontinuous paths. These in
lude, in parti
ular, the Ba
helier model, the Bla
k-S
holes-Merton model, the lo
al volatility models as well as the sto
hasti
 volatility models.What is more important, the pri
e and the hedge admit a simple analyti
 form. In thoserespe
ts, options on the range have similarities with options with the payo� f(S�), where� = infft � 0 : hSit � Lg (for more information on su
h options, see [1℄).Let us remark that on the set ft � �g, Vt has the form v(St; mt;Mt), while Ht has theform h(mt;Mt), where h(m;M) = �v(S;m;M)�S ;i.e. H is the delta-hedge. The fun
tion v is linear in S, so that h does not dependon S, whi
h means that the hedge remains 
onstant until the pri
e St rea
hes its runningmaximum or running minimum. This implies that the gamma of the option is zero.However, ea
h time when S breaks through its running maximum or minimum, the hedgeis updated (as Mt or mt 
hanges). Loosely speaking, one 
an say that the option has anon-zero \right-hand gamma"�2v(M + ";m;M + ")�"2+ = L�2f(M)� L�2f(M � L)� L�1f 0(M � L)1All the results remain the same if the word \martingale" is repla
ed by \lo
al martingale".3



at the time when the pri
e breaks through its running maximum and a non-zero \left-handgamma" �2v(m+ ";m+ ";M)�"2� = �L�2f(m+ L) + L�2f(m) + L�1f 0(m + L)at the time when the pri
e breaks through its running minimum. Here by �2=�"2+ (resp.,�2=�"2�) we denote the right-hand (resp., left-hand) se
ond derivative.Thus, the hedge should be updated only at the times when the pri
e breaks throughits running maximum or minimum. As time grows, these \break points" appear moreand more rarely (for example, in a random walk model, the number of su
h points in theinterval [0; N ℄ is of order N1=2). This makes the produ
t \quite hedgeable".Let us �nally remark that items (ii) and (iv) of Theorem 1.1 
an also be given a �nan-
ial interpretation. Consider the same setting as before and imagine an option that paysout the amount f(M� ). For these options, under the same assumptions as in Theorem 1.4,the following result holds.Theorem 1.4. (i) For any equivalent martingale measure Q, the pri
e V0 = EQf(M� )is given by V0 = L�1 Z S0+LS0 f(x)dx:(ii) For any equivalent martingale measure Q, the 
orresponding pri
e pro
ess Vt =EQ[f(M� ) j Ft℄ is given byVt = L�1(St �mt)f(mt + L) + L�1(Mt � St)f(Mt) + L�1 Z mt+LMt f(x)dx on ft < �gand Vt = f(M� ) on ft � �g.(iii) The hedge H is given byHt = I(t < �)[L�1f(mt + L)� L�1f(Mt)℄; t � 0:2 ProofsWe will prove Theorems 1.1 and 1.3. Theorem 1.4 is proved in the same way as Theo-rem 1.3. We are starting with an auxiliary lemma, whi
h is a generalization of the \plateproblem" mentioned at the beginning of the paper.Lemma 2.1. Let (Xn)n=0;1;::: be a standard symmetri
 random walk on Z. DenoteRn = maxi�n Xi �mini�n Xi; n = 0; 1; : : :and let � = inffn : Rn = Ng, where N is a �xed natural number. ThenP(X� = k) = jkjN(N + 1) ; k = �N; : : : ; N:4



Proof. Denote mn = mini�nXi. For k 2 Z, denote Tk = inffn : Xn = kg. Due to themartingale property of X,P(mTk � l) = P(Tl < Tk) = kk � l ; l � 0 < k:Consequently,P(mTk = l) = P(mTk � l)� P(mTk � l � 1) = k(k � l)(k � l + 1) ; l � 0 < k:As a result, P(X� = k) = P(mTk = k �N) = kN(N + 1) ; k = 1; : : : ; N:By the symmetry, we get the desired statement for k = �N; : : : ;�1. 2Proof of Theorem 1.1. In view of Remark 1.2, we have to prove only (i) and (iii).(i) Step 1. Let (
0;F 0; (F 0t)t�0;P0) be another probability spa
e with an (F 0t)-Brownianmotion B. Consider the enlarged �ltered probability spa
e de�ned bye
 = 
� 
0; eF = F � F 0; eFt = Ft � F 0t; eP = P� P0:Then the pro
ess eSt = St^� + Z t0 I(s � �)dBs; t � 0is an ( eFt;P)-
ontinuous lo
al martingale that 
oin
ides with S up to the time � andsatis�es hSi1 = 1. It is suÆ
ient to prove the desired statement for eS instead of S.Hen
e, we 
an assume from the outset that hSi1 =1.Step 2. For N 2 N , de�ne the stopping times �N0 = 0,�Nn+1 = inf�t � �Nn : jSt � S�Nn j = N�1L	; n 2 N :Due to the assumption hSi1 =1, all the stopping times �Nn are �nite a.s. It follows fromthe optional stopping theorem that the sequen
eY Nn = S�Nn ; n = 0; 1; : : :is a symmetri
 random walk (multiplied by N�1L). ConsiderRNn = maxi�n Y Ni �mini�n Y Ni ; n = 0; 1; : : : ;�N = inf�n : RNn = L N � 1N �;�N = �N�N :It is easy to see that L N � 1N � R�N � L:This yields the 
onvergen
e S�N ! S� a.s. Hen
e, the 
onvergen
e in law also holds.Employing Lemma 2.1, we 
omplete the proof.5



(iii) Using the same argument as in (i), Step 1, we 
an assume that hSi1 = 1. Fixt � 0 and denote eRs = supt�u�sSu � inft�u�sSu; s � t;e� = inffs � t : eRs = Lg:The assumption hSi1 = 1 ensures that e� < 1 a.s. For a.e. ! 2 ft < �g, the 
on-ditional distribution LawQ(Su; u � t j Ft)(!) is the distribution of a 
ontinuous martin-gale. Applying now (i), we see that, for a.e. ! 2 ft < �g, the 
onditional distributionQ! = LawQ(Se� j Ft)(!) has the formQ!(dx) = L�2jx� St(!)jI(St(!)�L;St(!)+L)(x)dx:A dire
t analysis of the path behavior shows that
S� = 8>>>>>>>><>>>>>>>>:

mt + L if mt + L < Se� < St + L;Se� if Mt < Se� < mt + L;Mt � L if St < Se� < Mt;mt + L if mt < Se� < St;Se� if Mt � L < Se� < mt;Mt � L if St � L < Se� < Mt � L:This yields the result.Proof of Theorem 1.3. Statements (i) and (ii) follow dire
tly from Theorem 1.1, so weonly have to prove (iii).Step 1. Suppose that S is a Brownian motion. The pro
ess V remains the same ifthe �ltration (Ft) is repla
ed by the natural �ltration of S, so we 
an assume from theoutset that (Ft) is the natural �ltration of S. A

ording to the representation theorem forBrownian martingales (see [3; Ch. V, Th. 3.4℄), there exists a predi
table pro
ess (Gt)t�0su
h that Vt = V0 + Z t0 GudSu; t � 0:Fix v � 0 and de�ne the stopping time �v = inffu � v : Su = mv or Su =Mvg. Considerthe pro
esses eGt = GtI(t � �v); t � 0;eHt = HtI(t � �v); t � 0;eVt = V0 + Z t0 eGudSu; t � 0;eXt = V0 + Z t0 eHudSu; t � 0:On fv � t � � ^�vg, the value Vt is an aÆne fun
tion of St, and the slope of this fun
tionis exa
tly Hv. Therefore,eVt � eVv = Hv(St � Sv); v � t � � ^ �v:6



Obviously, Ht is 
onstant on fv � t � � ^ �vg, so thateXt � eXv = Hv(St � Sv); v � t � � ^ �v:As both pro
esses eV and eX are stopped at the time � ^ �v, we see thateVt � eVv = eXt � eXv; t � v:From this we dedu
e that eG = eH ��P-a.e. on [v;1)�
, where � denotes the Lebesguemeasure.Thus, we have proved that G = H �� P-a.e. on every sto
hasti
 interval of the formf(!; t) : v � t � �(!) ^ �v(!)g. By the de�nition of H, Ht = 0 on ft � �g. As V isstopped at the time � , we 
an assume from the outset that Gt = 0 on ft � �g. Thus,G = H �� P-a.e. on every sto
hasti
 interval f(!; t) : v � t � �v(!)g. Obviously,f(!; t) : mt(!) < St(!) < Mt(!)g � [v2Q+f(!; t) : v � t � �v(!)g: (2.1)It is seen from the form of the joint law of (St;Mt) (see [3; Ch. III, Ex. 3.14℄) that, forany t � 0, P(St =Mt) = 0; similarly, P(St = mt) = 0. By the Fubini theorem,�� P�(!; t) : St(!) = mt(!) or St(!) =Mt(!)� = Z 10 P(St = mt or St = Mt)dt = 0:Thus, the set on the left-hand side of (2.1), and hen
e, the set on its right-hand side, havea 
omplete � � P-measure. We 
on
lude that G = H �� P-a.e. This yields the desiredresult.Step 2. Let us now 
onsider the general 
ase. Without loss of generality, S0 = 0.De�ne the fun
tionsg(S;m;M) = L�1(S �m)f(m + L)� L�1(M � S)f(M � L)+ L�2 Z mM�L(S � x)f(x)dx + L�2 Z m+LM (x� S)f(x)dx;h(m;M) = �L�1f(M � L) + L�1f(m+ L) + L�2 Z mM�L f(x)dx� L�2 Z m+LM f(x)dx:We 
an assume from the outset that S is stopped at the time � .Consider the time 
hangeTt = inffu � 0 : hSiu > tg; t � 0;where inf ; =1, and de�ne the pro
ess Xt = STt. It follows from [3; Ch. IV, Prop. 1.13℄and [3; Ch. V, Prop. 1.5℄ that the pro
ess X is a 
ontinuous (FTt)-lo
al martingale withhXit = hSiTt = t ^ hSi� ; t � 0:Let RX denote the range pro
ess of X. On fhSi� > tg, we have Tt < � , and hen
e,RXt = RTt < L; on fhSi� � tg, we have Tt = 1, and hen
e, RXt = R1 = L. This showsthat the stopping time e� = infft � 0 : RXt � Lg 
oin
ides with hSi� . Thus, hXit = t ^ e� .In parti
ular, we see that X is stopped at the time e� .7



Using the same method as in the proof of Theorem 1.1 (i), we 
onstru
t (possibly,on an enlarged probability spa
e) a Brownian motion eX that 
oin
ides with X up to thetime e� . Then e� = infft � 0 : R eXt � Lg, where R eX is the range pro
ess of eX. Thus, Xappears as the Brownian motion stopped at the �rst time its range ex
eeds L.Now, it follows from the result of Step 1 that on the set ft � e�g we haveg(Xt; mXt ;MXt ) = g(0; 0; 0) + Z t0 h(mXu ;MXu )dXu;where mX and MX are the running minimum and maximum of X. As X is stopped atthe time e� , we 
on
lude that the above equality is valid for all t � 0. Thus,g(STt; mTt;MTt) = g(Xt; mXt ;MXt )= g(0; 0; 0) + Z t0 h(mXu ;MXu )dXu= g(0; 0; 0) + Z t0 h(mTu;MTu)dSTu= g(0; 0; 0) + Z Tt0 h(mu;Mu)dSu; t � 0: (2.2)
The last equality is the time 
hange for sto
hasti
 integrals (the 
ombination of [3; Ch. V,Prop. 1.5℄ with [3; Ch. IV, Prop. 1.13℄).It follows from [3; Ch. IV, Prop. 1.13℄ that, for a.e. !, the path S(!) is 
onstant onall the intervals of 
onstan
y of hSi(!). Hen
e, the same is true for m and M . Moreover,�Z �0 h(mu;Mu)dSu�t = Z t0 h2(mu;Mu)dhSiu; t � 0:Hen
e, for a.e. !, the path of the pro
ess R �0 h(mu;Mu)dSu is 
onstant on all the intervalsof 
onstan
y of hSi(!). The set of points fTt(!); t � 0g o

upies the whole R+ ex
ept forthe intervals of 
onstan
y of hSi(!), but 
ontains all the right endpoints of those intervals.Now, we get from (2.2) the desired result. 23 Con
lusionWe have established the laws of a 
ontinuous lo
al martingale and its maximum at astopping time whi
h is the �rst time its range rea
hes a given level. We apply this resultto 
ompute the pri
e of options whi
h mature at that stopping time, only under theassumptions of no interest rate, fri
tionless market, no arbitrage, path 
ontinuity, and�niteness of the stopping time. The pri
e is model-free in the sense that it does notdepend on the pri
e pro
ess. The option is perfe
tly hedgeable, the hedge is model-free,and it needs rebalan
ing only when the 
urrent minimum or maximum is 
hanged.
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