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Abstract. The theorem proved by P. Lévy states that (sup B — B, sup B) =
(|B|, L(B)) . Here, B is the standard linear Brownian motion and L(B) is its local time in
zero. In this paper, we present an extension of P. Lévy’s theorem to the case of the Brow-
nian motion with a (random) drift as well as to the case of conditionally Gaussian mar-
tingales. Besides, we give a simple proof of the equality 2sup B* — B* faw |B* + L(B*)
where B?* is the Brownian motion with drift A € R.
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1 An Invariance Property of the Brownian Motion

1. Let B = (By)s>0 be the standard linear Brownian motion and B = (B?)tzo be the
Brownian motion with a drift (B} = M + B;) where A € R.
The classical theorem proved by P. Lévy (see [3], [9, ch.VI, §2, (2.3)]) states that

(sup B — B, supB) "2 (|B|, L(B)), (1)

i.e., the processes (sup By — By, sup Bg; t > 0) and (|Bt|, Ly(B); t > 0) have the same law.
s<t s<t

Here, L(B) = (Lt(B)_)tz(] is the local time of B in zero:

1 t
L(B)=lim— [ I(|B,|<¢e)ds as.
+(B) 3{325/0 (|1Bs] <e)ds as

It follows from (1) that
2supB — B 2 |B| + L(B). (2)
This “one-dimensional” property was extended in [10] to the case of the Brownian motion

with a drift:
2sup B> — B* "2 | B 1+ L(BY). (3)



The paper [1] presents an extension of the “two-dimensional” P. Lévy’s result. Namely,
it is proved in [1] that

(sup B* — B, sup BN) & (1 X7, L(XY)). (4)
Here, X* = (X}")i>0 is the (strong) solution of the stochastic differential equation (SDE)
dX} = —Asgn X} dt +dB;, X3 =0 (5)

and L(X*) = (Ly(X?))s>0 is the local time of X* in zero.
It follows from (4) that

2sup B> — B> & | X} 4+ L(X). (6)

Equalities (3) and (6) taken together yield
Theorem 1. For any A € R,

|BN + L(BY) 2 x| + L(X?). (7)

It makes sense to give a straightforward proof of this invariance in distribution for |z| +
L(z), z € C(Ry,R) when z = B” is replaced by # = X* since this property is of some
interest by itself. Note that (6) + (7) = (3) and (3) + (7) = (6).

Proof of Theorem 1. It follows from P. Lévy’s theorem (1) that for any A € R

and ¢ >0,
EerBt = Er(B)=IB) (8)

The following “conditional” version of equality (8) is the key point in the proof of Theorem
1: for any ¢t > 0,
E [e/\B ¢

FRO) = E[ME=B

.ER(B)] a.s. (9)

Here, R(B) = (Ry(B))i>0, Ri(B) = |By| + Ly(B) and F"®) = 5(R,(B); s < t). Further-
more,

AB.| pR(B)] _ shAR(B)

E[e i } T AR(B)

In order to prove (9) and (10), we first note that the symmetry considerations lead to the
equality

(10)

E|er |7 = l(eMBt‘ +eMA) (= ch By

2
where ]:JB| = 0(|Bs|; s <t). This, combined with the inclusion .ER(B) - FAB‘, implies that

E[e)‘Blt .ER(B)} = %E[eAlBt‘ + e ABl

7. (11)

It follows from [8] (see also [9, ch.VI, §3, (3.6)]) that the conditional distribution
Law (|By|| F*™) is the uniform distribution on [0, R;(B)]. Therefore,

Lo B —A|Bt|| -R(B) 1 AR:(B) _ _—AR¢(B)
e[ ] (),

" 2)\R,(B)

This, together with (11), proves (10).



Similarly, we deduce that

E[e)\(Lt(B)—\BtD ﬂR(B)} — JRu(B) E[e—QMBt\ Ft}%(B)] _
_ 1 ARi(B) _ _—ARy(B)\ _ ShAR(B)

Combining (10) and (12), we obtain the desired equality (9).

We now turn to the proof of the invariance property (7). Let Pp, Pgx and Py be the
distributions of the processes B, B* and X* on the canonical path space C(R,,R). We will
use Pp|F;, Ppr|F; and Px|F; to denote the restrictions of these measures to the o-fields
Fi = o(xs; s <t), t >0 where (x;);>0 is the canonical process on C(R;,R).

It is well known (see, for example, [4, ch.7, §2]) that

d(Ppr|F1) oy _ B2t

1
A(PslF) )
Taking into account Tanaka’s formula,
t
|By| = /0 sgn By dBs + L(B)
(see [9, ch.VI, §1]), we obtain
d(Pxx|F) (B) = o Mdsen By dB- At _ MLe(B)-|Bi)) -t (14)

d(Pg|Fy)

We will use Pr(py, Pr(p») and Pp(x») to denote the images of Pp, Ppx and Py under
the map
C(Ry,R) 32 +— R(z) € C(Ry,R)

where Ry(z) = |zy| + Li(z). Set FF = o(Rs(z); s < t). It can easily be checked that
(Pp — a.s.)

d(Prepy) |7 _ e | 4PelF) | R

APrn |7 = E apairy P (15)
and

d(Prixn| F) | d(PxelF) R

W(R(B)) =k W(B) Fi : (16)

Combining (13), (14) and (9), we see that the right-hand sides in (15) and (16) coincide
(Pp —a.s.) and
d(Prs)| 7F)

22, sh AR (B)
B)) = t :
) d(Prep)| FF)

(R(B))=e = NR(B) (17)

Therefore, Pgrpry = Pg(xx). This completes the proof of Theorem 1.

2. Remarks. 1) It follows from (17) that R(B*) 2 R(B™) and R(X*) &
R(X7H).

2) The results of [8] (see also [9, ch.VI, §3, (3.5)]) imply that the process 2sup B — B has
the same law as the three-dimensional Bessel process Bes(3) started at zero. The infinitesimal
generator A, of the v-dimensional Bessel process Bes(v) is given by

v—1d 1 d2

A== —wtage
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Thus, for v = 3, we have
d 1d?

ar 2
This implies that the process Bes(3) is a (strong) solution of the SDE

Az =

1
dri = —dt+dpf:,, 190=0
Tt

where 3 = (f;)¢>0 is the Brownian motion.

It follows from (2) that the process R(B) = |B| + L(B) is also a version of the Bessel
process Bes(3).

3) It was proved in [10] that the process 2sup B* — B is a diffusion process with the
following infinetisemal generator:

d  1d°
A
= Acothdr— + ——.
A3 AT *3 dr?
Equalities (3) and (6) imply that each of the processes |B*|+ L(B?*) and |X*| + L(X?) is a
diffusion process with infinitesimal generator A3 .
4) Due to equalities (15) and (17), the process

22, shARy(B)
My=e 2! ——=
LT TXR(B)

is a (ff(B),PR(B))—martingale. Set 7, = inf{t > 0 : Ry(B) = a}, a > 0. It is clear that
P(7, < 00) =1 and the family of random variables {M;x,, t > 0} is uniformly integrable.
Applying the optional stopping theorem, we get EM,, = 1. This is equivalent to the well-
known property

A2 Aa
Ee 27 = .
sh Aa
By comparison, for o, = inf{¢: |B;| > a}, one has
2
Ee 2% = !

It is obvious that 7, < o, .

2 Some Extensions of P. Lévy’s Theorem

1. The proof of property (4) was given in [1]. This proof is based on the application of
Girsanov’s theorem to the processes B and X*, Tanaka’s formula to |B| and P. Lévy’s
theorem (1) to the process B. However, it turns out that property (4) can be deduced directly
from Skorokhod’s lemma which is formulated below. This lemma is usually used to prove P.
Lévy’s theorem (see, for example, [9, ch.VI, §2, (2.1)]). Moreover, Skorokhod’s lemma makes
it possible to give new extensions of property (1) (see Theorems 3 and 4 below).

Lemma (Skorokhod). Let y = (y:)i>0 be a continuous function such that yo > 0.
There exists a unique pair of functions (x,1) = (x4, l;)i>0 such that

(a) z=y+1,

(b) x>0,

(c) 1 = (It)s>0 is increasing, continuous, vanishing at zero, and the corresponding measure
dly is carried by {s > 0:xzs =0}.

The function [ is moreover given by

Iy = sup(—ys v 0).
s<t



For the proof of this lemma, see [11], [9, ch.VI, §2, (2.1)].

2. We now turn to the extension of P. Lévy’s theorem to the Brownian motion with a
random drift.
First, let us consider the SDEs

dB{" = a(t, B®)dt +dB;, B =0 (18)

and
X" = —a(t,Y®) sgn X{” dt + dB,, X{” =0. (19)

Here, a = a(t,z) is a bounded process on C(R;,R) that is predictable with respect to the
canonical filtration F; = o(zs, s < t), and

t

v = — / sgn X (™ dx (. (20)
0

For a constant drift a(¢,z) = X, the solution of (18) is the Brownian motion with drift A

while SDE (19) transforms to (5).

Lemma 2. There is weak existence and uniqueness in law for SDE (18) as well as for
system (19)-(20).

P roof First, we prove the existence of a weak solution for system (19)-(20). Consider
the canonical path space C(Ry,R?) with the canonical process (z,y) = (24, y1)i>0 and the
filtration F; = o(zs,ys; s < t). Let P be a probability measure on F, = o(z5,ys; s > 0)
such that (z;);>0 is the Brownian motion with respect to P and

t
Yy = —(P)/ sgn s dx
0

where the symbol (P) denotes that the stochastic integral is constructed with respect to P.
Let us define the measures P} on the o-fields F; (¢ > 0) by

dP| ¢ I

Th@,y) = My = exp{~(P)[ als,y)dw, — 5 | a*(s,y)ds} (21)

dp, 0 2 Jo

where P, = P|F;. In view of the boundedness of a(s,y), Novikov’s criterion (see [6], [4, ch.6,

§2]) implies that M; is a (F;, P)-martingale. Thus, P/|Fs = P. for s <t. Therefore, there

exists a probability measure P’ on Fo, such that P'|F, = P/ for any ¢ > 0 (see [12, p. 34]).
As the stochastic integral remains unchanged with the (locally) equivalent change of

measure (see [5, Lemme II1.2.]), we have

t t
Yt = _(P)/ sgnzsdrs = —(P')/ sgnxgdxg.
0 0

This equality, combined with Girsanov’s theorem (see [2, ch.III, §3b, (3.11)]), proves that
the process (z¢,v¢)i>0 is a solution of system (19)-(20) on the filtered probability space
(C(Ry,R?), F, P').

We now prove the uniqueness in law for system (19)-(20). Let Q' be a probability measure
on (C (R, ,RR?), }'OO) corresponding to an arbitrary weak solution of this system. Define the
measures ; on the o-fields F; (¢ > 0) by

dQ

L o) = e {(@) sy o+ 3 [ s as) 22)



Arguing as above, we see that there exists a probability measure @) on Fo, such that Q|F; =
Qq for any ¢t > 0. By Girsanov’s theorem, the process (z¢)i>0 is (Fy, P)-Brownian motion.
Furthermore,

Yt = —(Ql)/ot sgnrsdrs = —(Q)/O1t sgnzg dzg.

Thus, @ = P. With the equality

@) als.pydo, = (@ atsy)dz, = (P) [ ats.p)da.
formulas (21) and (22) imply that

/ -1 '
dBf _ (dQ\TP_di
d}% dC?% dc?t

Hence, Q' = P’. This proves the uniqueness in law for system (19)-(20).
The weak existence and the uniqueness in law for SDE (18) are proved in the same way.
Theorem 3. Let B\%) and X® be solutions of SDEs (18)-(20). Then,

(supB(“)—B() supB( ‘X ‘ L ))), (23)

e., the processes (supBga) - Bga), supBg 9. ¢ > 0) and ‘X ‘ L )); t> 0) have the
s<t s<t
same law.

P r o o f. By Tanaka’s formula,
x| = / sgn X dxX@ + L, (X@) = =y 4 1,(X@).

Applying Skorokhod’s lemma, we derive that L, (X (a)) = sup Ys(a). Thus,
s<t

‘X ‘—squ() Yt(a)
s<t

and obviously,

(sup Ys(“) — Yt(a), sup Yt(a); t> 0) = (‘Xt(a)‘, Ly (X(“)); t> 0). (24)

s<t s<t

Further,

t t t
v == [Csgn X ax® = [Cas. @) ds - [ sgnx(®)ap, -
0 0 0
t ~
:/ a(s,Y@)ds+ By (25)
0

It follows from P. Lévy’s theorem (see [9, ch.IV, §3, (3.6)]) that the process B, =
— fot sgn X (@) dB; is the standard linear Brownian motion. It is obvious that B is a martin-
gale with respect to the filtration FYe (]—'Y(a))t>g Thus, Y(® is a solution of SDE (18).

The uniqueness in law for this SDE implies that Y(@) v o), Now, the desired result

follows from (24).

3. In all the cases above, the “basic” process is expressed by the Brownian motion
B = (By)i>0. In what follows, the “generating” process will be a conditionally Gaussian



(with respect to the filtration F(M) = (.7:t<M>)t>(]) martingale M = By = (B, )0 for

which B and the quadratic variation (M) are independent processes (see [2, ch. II ( 2)], [7])-
In [13] such martingales are called Ocone martingales.
Theorem 4. Let M = By be a conditionally Gaussian martingale with independent

processes B and (M). Set
M} = \(M); + M.

Let X denote a solution of the SDE
dX} = —Xsgn X} d(M); + dM;, X =0. (26)

Then,
(sup M* — M, sup MY) 2 (| x @], L(x@)). (27)

P roof We first prove that SDE (26) has a solution. Let B = (B;);>¢ be the initial
Brownian motion and Z* = (Z});>¢ be the solution of the SDE

dZ} = —\sgn Z) dt +dB;, Zj =0.
This equation (compare with (5)) has the unique strong solution (see [14]). Due to the
properties of the time-change (¢ — (M);), we have
A e A ! A
Zihy, = —A/O sgn Zg ds + By, = —)\/0 sgn Ziyyy, d{M)s + M;.
Thus, the process X} = Z<)‘M>1t is a solution of (26).
Set Y = — fg sgn X} dX) (compare with (20)). Then,

(sup V' — Y, squA t>0) = (|X}|, Li(X*); ¢t >0) (28)
s<t

which can be proved by the same argument as (24). Besides, thanks to (26), we have
t t
Y) = —/ sgn X} dX) = AN(M), —/ sgn X dM,.
0 0

The following statement is true for martingales M = By with independent B and (M)
(see [7, Theorem A, Lemma (2.5)]). If € = (¢)¢>0 is a predictable process taking values %1,
then,

((M)t, /t ey dM,: t > 0) (M), My; > 0).
0

Consequently, YA A, This, together with (28), completes the proof of (27).
Corollary 5. If M = By is a conditionally Gaussian martingale with independent B
and (M), then

(sup M — M, sup M) = (|M], L(M)).
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