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Abstract. We present necessary and sufficient conditions for the existence
of a unique invariant distribution for a one-dimensional stochastic differential
equation

dXt = b(Xt)dt + O'(Xt)dBt
such that this distribution is supported by an interval I C R.
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1 Introduction

The problem of the existence and the uniqueness of an invariant distribution for a
stochastic differential equation (abbreviated below as SDE) is a classical problem in
the stochastic analysis. However, the known results (see, for example, [4]) correspond
to the case, where the coefficients of the SDE “behave well enough”. In particular, this
means that a solution started at any point can reach any other point (we consider here
only the one-dimensional case), and therefore, the invariant distribution is supported
by the whole real line.

However, one often needs to consider SDEs that possess an invariant distribution
supported by a subinterval of R. For instance, this is needed in the stochastic volatility
models, where the invariant distribution for a SDE describing the volatility should be
carried by R, .

In this paper, we present necessary and sufficient conditions for the existence of a
unique invariant distribution p for the SDE

dX, = b(X,)dt + o(X,)dB, (1.1)

such that p is carried by an interval I C R and supp = I (see Theorem 3.1). Here
b:R — R and 0 : R — R are measurable functions. The only assumption we impose
is that 0 # 0 at each point.

Note that if I is smaller than R and SDE (1.1) possesses an invariant distribution
p with supp o = I, then this SDE is singular in the following sense: a solution started
at a point zo € I stays in I forever. For more information on singular SDEs, see [1].
The proof of our main theorem is largely based on results from [1].

1



2 Auxiliary Definitions and Known Facts

Throughout this section, we consider SDE (1.1) with a fixed starting point z € R.

By X we denote the coordinate process on C(R;), ie. Xy(w) = w(t) for
w e C(Ry); by (F;) we denote the canonical filtration, i.e. F; = o(X; s < t); fi-
nally, F = o(X,; s > 0). It will be convenient for us to define the solution of a SDE as
a solution of the corresponding martingale problem. This is equivalent to the notion
of a weak solution.

Definition 2.1. A solution of SDE (1.1) with the starting point z, is a measure
P on F such that

(a) P(XO = l‘o) = ]_,
(b) for any t > 0,

/0 (|b(X8)| + UZ(Xs))dS < oo P-as;

(c) the process

t
M, = X, —/ b(X,)ds, t>0 (2.1)
0

is an (Fy, P)-local martingale with

(M), = /0 CA(X)ds, 130,

For technical reasons, we will also need the definition of a solution up to a random
time.

Definition 2.2. Let S be an (F;)-stopping time. A solution of (1.1) up to S with
the starting point x( is a measure P on Fg such that

(a) P(XO = l‘o) = ]_,
(b) for any ¢ > 0,

/0 (|b(XS)| + UQ(Xs))dS <oo P-as;

(c) the process

tAS
Mt == Xt/\S - / b(Xs)dS, t 2 0
0

is an (F;, P)-local martingale with

(Note that in order to verify (a)—(c), it suffices to know the values of P on Fg only.)

Recall that a function f:R—R is locally integrable at a point a if faajﬂf(z) |dz < o0
for some € > 0; f is locally integrable on a set A if it is locally integrable at each point
of A. This will be denoted as f € L _(a) and f € L\ .(A), respectively.

In the statements below, we use the notations

T,=inf{t >0: Xy =a}, To.=T,NT. (2.2)



Proposition 2.3. Suppose that o # 0 at each point and there exists a € R such

that . |b|
+
o2 loc([a’ OO))

o(2) :exp{—/: 328 dy}, 2 € [a,00).

/ " pla)ds = oo,

then, for xqy € [a,00), there exists a solution P up to T,, and such a solution is unique.

We have T, < oo P-a.s.
/ p(z)dr < oo,

(ii) If
then, for xy € [a,00) and for any ¢ > xq, there exists a solution P® up to T, . and
such a solution is unique. We have lim,_, PC(XTG’C =c) > 0.

Set

(i) If

For the proof, see [1; Sect. 4.3].

A solution P up to S is called positive (resp., negative) if P(Vt < S, X; >0) =1
(resp., P(Vt < S, X; <0) =1).

The next proposition actually provides the one-sided classification of isolated sin-
gular points of SDEs.

Proposition 2.4. Suppose that o # 0 at each point and there exists a > 0 such

that -
P e Luto.a),
Set
o) =en{ [ 584} we .0,
/xp(y)dy if /ap( )dy < 00
s(z)=<"" 0 z € (0,al.
- [ owiy i / p(a)da = oo,
(i) If

/ )z < o0, /H'b v < o0, /OGEQ(Z)'dzmo, (2.3)

then, for xo € [0,a], there exists a solution P up to Ty, and such a solution is unique.
We have Ty, < oo P-a.s. and P(Xg,, =0) > 0.

(ii) If
‘ R LG | Y A UIC) I
/0 plojde < o / @) <% / P T Y
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then, for xq € [0,al, there exists a positive solution P up to T,, and such a solution is
unique. We have T, < oo P-a.s. and P(3t <T,: X; =0) > 0.

(iii) If

/ x)dr < 00, / ! + |b = o0, / 1(+)|b(( ); s(z)dx < oo, (2.5)

then, for xo € [0,a], there exists a solution P up to Ty, and such a solution is unique.
We have Ty, < 0o P-a.s. and P(Xp,, =0) > 0. For zo <0, any solution (up to any
stopping time) is negative.

(iv) If

/Uap(x)dx<oo’ /Ua%dm:oo, /0“1(+)|;(~("6x) 2)dz = OO/ d:E<oo,

(2.6)
then, for xy € (0,a] and for any ¢ € (0, ], there exists a solution P® up to T, ., and
such a solution is unique. We have lim,y PC(XTM =c¢) > 0. For zy <0, any solution
1S negative.

(v) If

/Oap(:r)d:r<oo, /OG%CL@:OO’ /0“1(+)|Ub(~8 x)dr= oo/ dx:(j;’)

then, for zo € (0,a], there exists a solution P up to T,. Such a solution is unique and
is strictly positive. We have P(T, = oo and lim;_,, Xy = 0) > 0. For zq < 0, any
solution is negative.

(vi) If 1 b
x)dr = 00, / + | |s(z)|dz < oo, (2.8)

then, for xy € (0,a], there exists a solutzon P up to T,. Such a solution is unique
and is strictly positive. We have T, < oo P-a.s. For xo = 0, there exists a positive
solution P up to T,, and such a solution is unique. We have T, < oo P-a.s.

(vii) If
1 b
x)dr = o0, / i | |s(z)|dx = oo, (2.9)
then, for zo € (0, a], there exists a solution P up to Ta. Such a solution is unique and

18 strictly positive. We have T, < oo P-a.s. For xy <0, any solution is negative.

For the proof, see [1; Sect. 2.5].

3 The Main Theorem

Let I C R be an interval that may be closed, open, or semi-open. We assume that [
consists of more than one point. We will use the notation

mmzwﬁif”@u§,am=/%@@,zei (3.1

o%(y)




where [ denotes the interior of I and [ * denotes a version of the indefinite integral.

This notation makes sense if l;‘b‘ € Llloc(;).

For f : I — Ry, the statement “[ f(z)dz < oo at the endpoint of I” means
that fUm x)dr < oo for some neighborhood of this endpoint; the statement
“[ f(z)dz = co at the endpoint of I” means that [, f(z)dz = oo for any neighbor-
hood of this endpoint (the endpoint might be finite or infinite).

Theorem 3.1. Suppose that o # 0 at each point. Then (i)+ (ii) < (a)+-- -+ (e):

(i) For any starting point xo € I, there ezists a solution P, of (1.1) with P, (Vt >
0, Xy €I)=1, and such a solutzon 1S unique.

(ii) There exists an invariant distribution p (i.e. for any t > 0, Law(X; | P,) = u,
where P, = [,P,u(dz)) carried by I (i.e. p(I)=1) with supppu =1 (I denotes
the closure of I), and such a distribution is unique.

(a) We have
1+ [b| o

0 e (). (32)
(b) We have

1

— e LMI 3.3

e L) (3.3

(ie. [;p™ (r)dr < o0).

(c) At the mﬁmte endpomts of I, we have

/p(m)dm = 0. (3.4)
(d) At the finite endpoints of I that do not belong to I, we have

/p(x)dx = 0. (3.5)

(e) At the finite endpoints of I that belong to I, we have either

/ x)dr < 00, / 1+|b r < 00, o)l dx = o0 (3.6)

o*(x)

/ 2)dz = oo, /”'b (2)]dz < oc. (3.7)

If these conditions are satisfied, then the measure p given by (ii) has the form

or

p(z)o?(x)

where ¢ s the normalizing constant. Moreover, for any distribution v carried by I,
we have

p(dz) = da, (3.8)

Law(X, | P,) ioo n

where P, = [, P,v(dz).



Remark. In the case, where I = R, condition (3.2) is the Engelbert-Schmidt con-
dition that guarantees the existence of a unique (possibly, exploding) solution of (1.1)
(see [3]). O

Corollary 3.2 (Cox—Ingersoll-Ross process). Let b,c,0 > 0. Consider the
SDE
dXt = (b — CXt)dt + o/ XtdBt. (39)

For any starting point xo > 0, there exists a positive solution of (3.9), and such a
solution is unique. There exists an invariant distribution supported by R, , and such a
distribution is unique. It is given by

p(dz) = e/ e 2 [(z > 0) du,

where ¢ is the normalizing constant. For any probability measure v carried by R, , we
have

Law(X, | P,) 25 1
t—o0

Proof of Theorem 3.1. (a)+ ---+ (e) = (i) Let us first prove the existence
of P,,. We will do this only for the case, where I is a compact interval, condition (3.6)
is satisfied at the left endpoint of I, and condition (3.7) is satisfied at the right endpoint
of I. For the other cases, the proofs are similar.

Suppose first that xy does not coincide with the right endpoint of I. Without loss
of generality, we can assume that the left endpoint of I is 0 and that s(0) = 0, where
s is given by (3.1). Let B be a Brownian motion started at s(zq). Set

gpt:inf{uEO:/I(Bs>0)ds>t}, U,=B,, t>0.
0

The process U is known to be a Brownian motion reflected at zero (see [5; § 2.11]),

and hence,
Ut:S($U)+Wt+L?(U), tZO,

where W is an (F/)-Brownian motion and L?(U) denotes the local time spent by U
at 0 by the time ¢ (see [6; Ch. VI, Th. 1.2]).
Set

#(y) = p(s~ (y)o(s™'(y), yes) (3.10)

and consider
“ o
= inf >0: ———ds >t t>0
Yy =in {u_ /0 (0 S }, 2 U,
W:U¢t:s(x0)+W¢t+L3t(U), t>0.

The process M, = Wy, is a continuous (FY,)-local martingale (here Ff, =
Nesgo(Us; s < t+e)) with

Pt %2 t
<M>t:¢t:/0 zzgg; dS:/O 5 (Vy)ds, t>0

(see [6; Ch. V, Prop. 1.5]).




Let us consider the function

_JsTH ) it y >0,
f(y)_{o it y<o0.

The functions f, f' are absolutely continuous on (0,00) and

1 y) = 26(8‘1(31))’ y >0,
7 (y)

Furthermore, for any a > 0,

GO P A TG | I
| = [ e <o (3.11)

Hence, f' has bounded variation on Compact intervals. Moreover, (3.11) shows that
there exists a limit lim, o f'(y) = limmw Taking into account (3.6), we deduce that
this limit equals zero. By the Ito6- Tanaka f)ormula and the occupation times formula,

(Vi) = /f dM+/f ALY, (U) + —/OOOML%W)@

2 2 (y)

v+ [ A + / (s~ (V))ds = N, + /Utb(f(Vs))ds, >0

0

(in the last step we used the equality f’ (0) =0). Here N is a continuous (F})-local
martingale with

B t %2(‘/;) . t0_2 )
<N>t_/0 pQ(S_l(VS))d _/0 (f(‘/:s))da tZO

As a result, the measure P = Law(f(V;); t > 0) is a solution of (1.1).

Suppose now that x, coincides with the right endpoint r of I. Fix a € } By
Proposition 2.4 (vi), there exists a solution Q up to 7, with the starting point r (7, is
given by (2.2)). It follows from the reasoning above that there exists a solution R with
the starting point a. Let P, be the image of Q x R under the map

C(Ry) x C(Ry) 3 (wi,ws) — G(wi,wa, To(wr)) € C(Ry ),

where G is the gluing function defined by

w1 (t) if t<T,

G(wi,ws, T)(t) = {m(t -T) if t>T.

Then P, is a solution with the starting point r (for more details, see [1; Lemma B.10]).

Let us now prove the uniqueness of P,,. Without loss of generality, we assume
that x4 is not the right endpoint of I (otherwise, it is not the left endpoint). Suppose
that there exist two different solutions P,, and ﬁxo. Fix a € ; such that a > zg.
It follows from Propositions 2.3, 2.4 that P,, | Fr, = IS‘,]E0 | Fr, and T, < oo P,
§$0—a.s. Let (Qu)wecr,) (resp., (Qw)wec(RJr)) denote the conditional P, -distribution
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(resp., P, -distribution) given Fr, . Let R, (resp., R, ) be the image of Q,, (resp., Q)
under the map

CRy)> fr—9eC(Ry), g(t) = f(t+Tu(f)).

Then, for P, -a.e. (resp., P, -a.e.) w, the measure R, (resp., R, ) is a solution of (1.1)
with the starting point a. It follows from Propositions 2.3, 2.4 that there exists a unique
solution R up to T,, with the starting point a. Hence, for P, -a.e. (resp., P, -a.e.)
w, we have R, | Fr, = R (resp., R | Fr,, = R). As aresult, Py, | Fs = P, | Fs,
where S = inf{t > T, : X; = z0}. Proceeding in the same way, we conclude that, for
any n, Py, | Fs, = Py, | Fs, . where Sg =S,

S’n+1 = lnf{t Z Tn+1 -+ Xt == .ZEU}, Tp+1 = 1nf{t Z S’n : Xt == a}.

Since S, —— 0o, we conclude that P,, = ISQ;O.

n—oo

(a) + -+ (e) = (ii) Suppose first that zq € 7 and let P., be the solution given
by (i). It follows from the explicit construction of the solution given above that

P,, = Law(s™'(By,); t > 0), (3.12)

where B is a Brownian motion started at s(xg), s is given by (3.1),
“I(Bs e J
Tt:{uZU:/$d8>t}, tZO,
o #(Bs)

J = s(I), and s is given by (3.10). Consider the measure v on J defined as v(dy) =
——dy, where ¢ is the normalizing constant. Such a constant exists in view of (3.3)

#(y

and the equality
It is known (see [7; Th. 54.5]) that Law(B;,) tvi> v. Hence,
—00

Law (X, | P,,) tV—> 1, (3.13)
—00
where p is the measure on I given by (3.8).

Suppose now that xy is an endpoint of I. For any a € I and t > 0, we have

/0 I(X, = a)ds = /0 % d(X), = /11(527(:;5)@ L3(X)dz =0 P, -as. (3.14)

Hence, for a.e. t >0, P, (X; = a) = 0. Combining this with the Markov property of
(Pz)zer (see [8; Th. 6.2]), we deduce that (3.13) holds for any x, € I. For any s > 0,
t > 0, we have, by the Markov property,

Law(Xyss | P,) = Law(X, | Law(X; | P,)).

Letting ¢t — oo and keeping (3.13) in mind, we get Law(X; | P,) = p, so that p is
invariant. The uniqueness of an invariant distribution is an immediate consequence

of (3.13).



(i) + (ii) = (a) Let us suppose that there exists a € T such that

1+ b
02

¢ Lio(a). (3.15)
Without loss of generality, we can assume that a = 0.

Let Py be the solution given by (i). First we will verify that for any ¢ > 0,
LY(X) =0 P-as. (compare with [2; Th. 2.3]). We have

/otI(Xs = 0)dX, = /OtI(Xs = 0)b(X;)ds + /OtI(Xs = 0)dM,,

where M is defined in (2.1). The process N, = fot I(X, = 0)dM, is a continuous
(Fi, Po)-local martingale with

(N), = / I(X, = 0)0*(X,)ds.

Recalling (3.14), we deduce that fot I(X; = 0)dX; = 0 Py-as., and hence (see [6;
Ch. VI, Th. 1.7]), LY(X) = LY~ (X) Py-a.s. Combining this with the equality

/0(1+|b(Xs)|)ds:/0 %d()@s:/ﬂ%%ﬁ@()d:ﬂ Py-a.s.

we get LI(X) =0 Pg-a.s.
Suppose now that

Po(Ft>0:X,>0)>0, Po(Ft>0:X,<0)>0. (3.16)
By the Tanaka formula,
t t
X = / I(Xs > 0)b(X,)ds +/ I(Xs > 0)dM,, t>0.
0 0

Set
t
At:/I(XS>0)ds, n=inf{s>0:4,>t}, t>0
0

and consider

X5 if t < A,
Y, = b
0 if t> Ax.

We have
Tt Tt tA Ao
Y, :/ (X, > 0)b(X,)ds +/ (X, > 0)dM, :/ b(Y))ds + K, > 0.
0 0 0
The process K is a continuous (F,,, Py)-local martingale with

Tt tAAso
(K), = / I(X, > 0)0*(X,)ds = / o*(Y,)ds, t>0.
0 0



Now, let (Y1, AL), (Y2, A%),... be independent copies of (Y, A). Set

Y, if t< AL,
Zy =S Y2, if AL <t <Al + A%,

One can verify that the measure Py = Law(Z; t > 0) is a positive solution of (1.1)

with the starting point 0. It follows from (i) that Py = Py, but this contradicts (3.16).
As a result, Py should be either positive or negative.

Without loss of generality, we can assume that Pg is positive. Let p be the invariant
distribution given by (ii). Set

G(dz) = I(z > O)u(dz), T, = /I Law(X, | P, )7i(dz).

Since Py is positive, we deduce using the strong Markov property of (P;).e; (see [8;
Th. 6.2]) that the mass fi cannot escape from INR, . Consequently, 7,(R,) > (R, ).
On the other hand, since y is invariant, f;|r, < plr, = filr,. Hence, 71, = 7i. This
means that any distribution of the form ajfi+ Su is invariant. The contradiction shows
that (3.15) is false.

(i) + (ii) = (c) Suppose that the right endpoint of I is +oc and [ p(z)dz < co in

the neighborhood of +oc. Take any z, € 1. Tt follows from Proposition 2.3 (ii) that
P, (lim;, o X; = 00) > 0. For any y > z, we have by the strong Markov property of
(P:v):vel:

P (tll)rglo X, = oo) =P, (T, < oo)Py<lim X, = oo)

t—o0

(T, is given by (2.2)). Hence, for any y > x,
Py (tliglo A= OO) 2 Pay (tllglo X = OO)

But this contradicts the existence of an invariant distribution supported by 1.

(i)+ (i) = (d) Suppose that the left endpoint of I equals 0 and does not belong to
I. Tt is clear from Proposition 2.4 that none of conditions (2.3)—(2.6) is satisfied since
otherwise the condition P, (¥t > 0, X; > 0) = 1 will be violated. If condition (2.7)
is satisfied, then P, (lim; . X; = 0) > 0, and, applying the same reasoning as above,
we arrive at a contradiction with (ii).

(i) + (ii) = (e) Suppose that the left endpoint of I equals 0 and belongs to I.
It is clear from Proposition 2.4 that none of conditions (2.5), (2.6), (2.7), and (2.9) is
satisfied, since otherwise a solution with the starting point 0 will be negative.

Suppose that condition (2.3) is satisfied. Note that in this case

/71 + [b(z)] dr < oo

o*()

at zero. Without loss of generality, we can assume that s(0) = 0, where s is given
by (3.1). Consider the function

) s(a) if ©>0,2€l,
f) = {p((H—)x if z <0.
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By the Ito-Tanaka formula,

2b(x)

7000 = [ ppxgas+ [ pxant— 5 [ ZE oL (¥ds =[x i,

Thus, f(X) is an (F;, Po)-local martingale, where Pq is given by (i). Since f(Xy) =0
and f(X) > 0, we get f(X) =0 Py-a.s., which means that X = 0 Pj-a.s., but this
contradicts (3.14). As a result, condition (2.3) is not satisfied.

(i) + (ii) = (b) We have proved that (i) + (ii) = (a) + (¢) + (d) + (e). The
reasoning in the proof of the implication (a) +---+ (e) = (i) (where we actually used
only (a), (c), (d), and (e)) shows that, for z, € ;, (3.12) is satisfied.

Choose functions f: J —- R, , g:J — R, such that f and g are bounded, f < ag
for some a € R, and

G 9(s'(v))
/J 20y dy < oo, 0</J 20y) dy < 0.

It follows from the ergodic theorem for one-dimensional diffusions (see [7; Ch. V,
Th. 53.1]) that

v F(5 ) f@)
[ [ dy:/lp@)az(z)d
Lo tooe [ g(s (y)) glr) -
[ o7 B pas / 20y Y /Ip<z)a2<z)d

/0 i s, /1 %dm
g

Hence,

N . (3.17)
t—r00 g(x)
X,)ds /*dx
[ 1 o(@)0?(@)
On the other hand,
1 t
Er,; [ F(X)ds = [ f@n(aa),
0 I
1 t
Er,; [ 9(X)ds = [ gloputdn)
0 I
This, combined with (3.17) and with the properties of f and g, shows that
T
et
[ () - [ st
I / g9(z) de 1
1 p(z)o?(z)
It follows that c
uldr) = ———dx
= @)
with some constant ¢, which implies (b). O
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