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1 Introduction

The problems of absolute continuity and singularity of probability measures defined on a
filtered space play a significant role both in the pure stochastic analysis and in its appli-
cations (for example, financial mathematics). The contribution of A.N. Shiryaev to this
subject is large and well known. This is represented, in particular, by his papers [13],
[14], [22], [23], [24], [25], [28] as well as his monographs [12], [26], [27], and [37]. The ple-
nary talk of A.N. Shiryaev at the International Congress of Mathematics (Helsinki, 1978)
was entitled “Absolute continuity and singularity of probability measures in functional
spaces”. We therefore hold it an honor to be able to put our paper in the Festschrift.

The problems that are typically studied in relation to the subject mentioned concern
such questions as: whether two measures are (locally) absolutely continuous, whether
they are singular, etc. However, a situation may naturally occur, where the two measures
are neither (locally) absolutely continuous nor singular. Consider the following example:
Q= C([0,00)), (.7-}) is the canonical filtration, and P (resp., P) is the distribution of a ~-
dimensional (resp., 7-dimensional) Bessel process started at a point zo > 0. If yAY < 2,
then, for any ¢ > 0, the measures P, = P | 7, and pP,=P | F; are neither equivalent nor
singular. To be more precise, the situation is as follows: for any stopping time 7 such
that 7 < Ty := inf{t > 0 : X; = 0} (here X is the coordinate process), the measures
P, =P | F. and P. =P | F, are equivalent; for any stopping time 7 > Ty, P, and
ﬁT are singular. Thus, the time T plays the following important role in this example:
informally, this is the time, at which P and P are separated one from another.

The situation described above admits a clear interpretation in terms of statistical
sequential analysis, which is another big topic of the research activity of A.N. Shiryaev
(this is reflected, in particular, by his monographs [27], [36], and [38]). Suppose that we
are observing a process X that is governed either by the measure P or by the measure
P (these are the measures described above) and are trying to distinguish between these
two hypotheses. Then, until the time X hits zero, we cannot say for sure what the true



measure is; but immediately after this time we can say for sure what the true measure
is. This situation is in contrast with the typical setup of statistical sequential analysis,
where the two hypotheses are typically assumed to be locally equivalent.

Let us now consider the general situation: let (2, F,(F;)icjo,00)) be a space with a

right-continuous filtration (here F =\/, ;) and P, P be two probability measures on
this space. In Section 2, we formalize the concept of the time, at which the two measures
are separated. Namely, we prove that there exists a P,P-a.s. unique stopping time S
with the property: for any stopping time 7, the measures P, and P, are equivalent
on the set {7 < S} and are singular on the set {7 > S} (actually, S is given by
inf{t >0: 7, =0or Z, =2}, where Z denotes the density process of P with respect
to (P + P)/2). Informally, P and P are equivalent before the time S and are singular
after this time. We call S the separating time for P and P. In order to be able to
distinguish the situation, where P and P are locally equivalent and are globally singular
(i.e. singular on F), from the situation, where they are globally equivalent, we add a
point § > oo to [0, c0] and allow S to take values in [0, 00]U{d} (informally, the equality
S(w) = & means that P and P are “globally equivalent on the elementary outcome w”).

The properties such as (local) absolute continuity and singularity are easily expressed in
~ loc

terms of a separating time (see Lemma 2.7). For example, P<Piff S=¢ ﬁ—a.s., PKP
iff $>o00 P-a.s. (ie. P(S € {00,0})=1); Py L Py iff S=0 P,P-as., etc.

In order to illustrate the notion of a separating time, we give in Section 3 the explicit
form of this time for the case, where P and P are distributions of Lévy processes. This
is just a translation of known results into the language of separating times.

In Section 4, we consider the case, where P and P are distributions of Bessel processes
of different dimensions started at the same point and prove that in this case the separating
time has the form S = inf{t > 0: X; = 0}, where X denotes the coordinate process. This
puts the above discussion related to Bessel processes on a solid mathematical basis.

The introduction of separating times enables us to give a complete answer to the
problem of (local) absolute continuity and singularity of solutions of one-dimensional
homogeneous stochastic differential equations (abbreviated below as SDEs), i.e. equations

of the form
dXt = b(Xt)dt + O'(Xt)dBt, X() = 2y (11)

(the conditions we impose on the coefficients are the Engelbert—Schmidt conditions, i.e.
b and o are measurable, o # 0 pointwise, and (1 + |b|)/c? € Li.(R); this guarantees the
existence and the uniqueness of a solution). Namely, in Section 5, we find the explicit
form of the separating time for the measure P being the solution of (1.1) and the measure
3 being the solution of a SDE

dX, = b(X,)dt + 5(X,)dB,, X, = xq.

As a corollary, we obtain criteria for (local) absolute continuity and singularity of P and
P. The problems of (local) absolute continuity and singularity for diffusion processes
were extensively studied earlier. Let us mention the papers [8], [10], [13], [14], [15], [16],
[17], [23], [31] and the monographs [12; Ch. IV, § 4b], [27; Ch. 7]. We consider here a
more particular case (only homogeneous SDEs), but in this case we obtain more complete
results. Namely, in the majority of the sources mentioned above, conditions for (local)
absolute continuity and singularity are given in random terms (typically, in terms of the
Hellinger process). In contrast, here the explicit form of the separating time and conditions



for (local) absolute continuity and singularity are obtained in nonrandom terms, i.e. in
terms of the coefficients of SDEs. In this respect, our results are similar to those in [31].
Furthermore, all the sources mentioned above (including [31]) deal with (local) absolute
continuity or singularity of measures, while our results are applicable to measures that
are in a general position, i.e. they are neither (locally) equivalent nor singular.

Let us illustrate the structure of the results of Section 5 by a simple example. Let P
and P be solutions of SDEs

dXt = O'(Xt)dBt, X(] = X,
dX, = b(X,)dt + 5(X,)dB,, X, = 0,

respectively. We assume that both equations satisfy the Engelbert—Schmidt conditions.
Let us also assume for the simplicity of presentation that P is nonexploding (P is non-
exploding automatically), although we consider exploding solutions as well. Our results
yield that the separating time for P and P has the form:

§ if b=0and5%=02 pr-a.e.,
inf{t > 0: X, € A} otherwise,

where X denotes the coordinate process, inf () := oo, p; denotes the Lebesgue measure,

and A denotes the complement to the set

{zeR .2 /5% € LL () and 5% = 02 py-a.e. in a neighborhood of z}.
As a corollary,

P<P < P<P < P=P <= b=0and5>=0> ps-ae,
~ loc loc ~

PSP «— P<P <« 1*/6"cL..(R) and 5> =0 pr-ae.,

loc

Py LPy <= 0?/5%¢ Ll (o) or Ve >0, pp((zo—e, zg+2)N{5%£0?}) >0,

Some facts concerning the qualitative behaviour of solutions of SDEs (these are needed
in the proofs of results of Section 5) are given in the Appendix.
A shortened version of this paper appeared as [5].

2 Separating Times

2.1. Mutual arrangement of a pair of measures on a measurable space. Let
P and P be probability measures on a measurable space (€2, F). The following result is
well known.

Proposition 2.1. There exists a decomposition ) = E LI D L l~), E, D, D € F such

that P ~ P on the set E and P(D) = P(D) =0 (here “LI” denotes the disjoint union).

This decomposition is unique P, P-a.s.

Remarks. (i) For the above decomposition, we have P ~ P on E and P L P on E*
(here E° denotes the complement to E). The decomposition Q = E Ul E¢ with these
properties is also unique P, P-a.s.
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Figure 1. Mutual arrangement of a
pair of measures on a measurable space

(ii) The sets E, D, D from Proposition 2.1 can be obtained as:

- dP dP dP dP dP dP
{dQ O,dQ>O}, {dQ>O’dQ>O}’ {dQ>O’dQ 0},

where Q = PQLP.

(iii) Proposition 2.1 admits the following statistical interpretation. Suppose that we
deal with the problem of distinguishing between two statistical hypotheses P and P.
Unlike the standard setting in statistics, we do not assume that P and P are equivalent.
Suppose that an experiment is performed, and an elementary outcome w is obtained. If
w € D, we can definitely say that the true hypothesis is P; if w € D, we can definitely
say that the true hypothesis is P; if w € F, we cannot say for sure what is the true
hypothesis.

The result of Proposition 2.1 is illustrated by Figure 1.

2.2. Mutual arrangement of a pair of measures on a filtered space. Let
(€2, F) be a measurable space endowed with a right-continuous filtration (F;).cj0,)- Re-
call that the o-field F, (7 is a stopping time) is defined by

Fr={AeF: An{r <t} e F forany t € [0,00)}.

(In particular, Foo = F.)

Let P and P be probability measures on F. As usually, P, (resp., ﬁT) denotes the
restriction of P (resp., P) to ;.

In what follows, it will be convenient for us to consider the extended positive half-line
[0,00] U {0}, where ¢ is an additional point. We order [0, 00] U {d} in the following way:
we take the usual order on [0, 00] and let § > oo.

Definition 2.2. An eztended stopping time is a map T : Q — [0, 00] U {6} such that
{T <t} € F, for any t € [0, 00].

The following theorem is an analog of Proposition 2.1 for a filtered space. A similar
statement is proved in [20; Lem. 5.2].

Theorem 2.3. (i) There exists an extended stopping time S such that, for any stop-
ping time T,

P, ~ P, on the set {r < S}, (2.1)
P, L P, on the set {r > S}. (2.2)

(ii) If S’ is another extended stopping time with these properties, then S' = S P, P-a.s.
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Proof.N(i) Set Q = P;’—ﬁ. Let (Z;)iejo,00) and (Zt)ti[o’oo} de1~10te the de_nsity processes
of P and P with respect to Q (we set Z, = %, Zoo = %). Let (F;) denote the
Q-completion of the filtration (). Then the (F,,Q)-martingales Z and Z have the
modifications whose all trajectories are cadlag. The time

S =Mnf{t €[0,00]: Z,=0or Z =0}

(“inf” is the same as “inf”, except that inf() = §) is an extended (F;)-stopping time.
According to [12; Ch. I, Lem. 1.19], there exists an extended (F;)-stopping time S such
that S =S Q-a.s. It follows from [12; Ch. III, Lem. 3.6] that 7,7, = 0 on the stochastic
interval [S,o00] Q-a.s. Consequently, for any (F;)-stopping time 7, we have 7.7, =0

Q-a.s. on {7 > S}. The equality

dP,
dQ,

dP
= EQ<E ‘ ]—"T> =Eq(Zue | Fr) = 2,

and the analogous equality for % complete the proof.
ii) Proposition 2.1 implies that, for any stopping time 7, the sets {r > S} and

y g
{r > S'} coincide P,P-a.s. This yields the desired statement (one needs to consider only
the deterministic 7). O

Definition 2.4. A separating time for P and P is an extended stopping time that
satisfies (2.1) and (2.2) for all stopping times 7.

Remarks. (i) It is seen from the proof of Theorem 2.3 (ii) that in defining the sepa-
rating time one may use only the deterministic 7.

(ii) Theorem 2.3 admits the following statistical interpretation (compare with Re-
mark (iii) after Proposition 2.1). Suppose that we deal with the problem of the sequential
distinguishing between two statistical hypotheses P and P. Assume for example that
(F:) is the natural filtration of an observed process (X;);>o. Suppose that an experiment
is performed, and we are observing a path of X. Then, until time S occurs, we cannot
say definitely what the true hypothesis is. But after S occurs, we can say definitely what
the true hypothesis is (on the set {Zs = 0}, this is P; on the set {Zs = 0}, this is P).

Corollary 2.5. (i) There exists an extended stopping time S such that, for any stop-
ping time T,

P, < P, on the set {r < S}, (2.3)
P, L P, on the set {r > S}. (2.4)

(ii) If S’ is another extended stopping time with these properties, then S' = S P-a.s.

Definition 2.6. A time separating P from P is an extended stopping time that sat-
isfies (2.3) and (2.4) for any stopping time 7.

Clearly, a separating time for P and P is also a time separating P from P. The
converse is not true since the former time is unique P,P-a.s., while the latter time is
unique only P-a.s.



\w -500
\ 2
S | F
EoS B, E
ws ] S ———
1
| W2 _ (
\ i Du< D
Doyt¥t |
0 S(w2) u o 0 t

Figure 2. Mutual arrangement of a
pair of measures on a filtered space (here
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Informally, Theorem 2.3 states that the measures P and P are equivalent up to a
random time S and become singular at a time S. The equality S = ¢ means that P and
P never become singular, i.e. they are equivalent up to infinity. Thus, the knowledge of
the separating time yields the knowledge of the mutual arrangement of P and P. This is
illustrated by the following result. Its proof is straightforward.

Lemma 2.7. Let S be a separating time for P and P. Then

i) P~P <= S=6 P P-as.;

(ii) P<P <= S=4§ P-as;

(iii) PXP <« S>o00 P,P-as.;

(iv) P 1<0<C P < S5>o00 P-as;

(v) PLP <= S<oo P Pas <= S<oo P-as.
(vi) PolPy < S=0P,P-as. <= S=0 P-as.

Remark. Other types of the mutual arrangement of P and P are also easily expressed
in terms of the separating time. For example, for any ¢ € [0, o0],

5tLPt — S<t P,ﬁ-a.s. — S<t P-as.

The mutual arrangement of P and P is illustrated by Figure 2. In this figure, the
measure P “lies above” the curve 1; the measure P “lies below” the curve 2. The decom-
position Q = E; U D, U D, of Proposition 2.1 for the measurable space (€2, F;) is obtained
by drawing a vertical line corresponding to the time ¢. Figure 2 shows three decomposi-
tions of this type: for ¢t =0, for t = u € (0,00), and for t = oco.

The separating time for P and P is illustrated as follows. If w € Dy U lN)g, then
S(w) = 0 (see w = wy in Figure 2). If w € Ey, then S(w) is the time, at which the



horizontal line drawn through the point w crosses curves 1 or 2 (see w = wy in Figure 2).
If this line crosses neither curve 1 nor curve 2, then S = oo in the case w € Dy U D
(see w = wj in Figure 2), and S =4 in the case w € Ey (see w = wy in Figure 2).

3 Separating Times for Lévy Processes

Let D([0,00),R?) denote the space of the cadlag functions [0,00) — R?. Let X denote
the canonical process on this space, i.e X;(w) = w(t). Consider the filtration F, =
Noso0(Xss € [0, +¢]) and set F = \/, ;. In what follows, (-,-) denotes the scalar
product in R? and || - || denotes the Euclidean norm.

Let P be the distribution of a Lévy process with characteristics (b, ¢, v), where b € R,
¢ is a symmetric positively definite d x d matrix, and v is a measure on B(R?) such that
v({0}) = 0 and [.(||z]* A1) v(dz) < oo. This means that, for any ¢ € [0,00) and
A ERY,

Ere ) = exp{t[i(0,8) = 500N + [ (€0~ 1= i) 1] < D))}
R4
(For further information on Lévy processes, see [1], [34], [37; Ch. III, § 1b].) Let P be the
distribution of a Lévy process with characteristics (b, ¢, 7).
The following theorem yields an explicit form of the separating time for P and P.
This is actually a reformulation of known results (see, for example, the survey paper [35])
into the language of separating times.

Theorem 3.1. The separating time S for P and P has the following form.
(i) If P=P, then S=4§ P,P-a.s.
(ii) If P #P and

c=¢, (3.1)
dv dv ? B
/Rd (\/d(v +7) \/d(u ) ) dlv+7) < oo, (3.2)
b—b— zd(v—v MN(c), ‘
/{|m||<1} ( ) € Ne) (3.3)

where N(c) = {cx: v € R}, then
= inf{t € [0,00): AX, #0,AX, ¢ E} P,P-a.s.

(we set inf() = o0), where E € B(RY) is a set such that v ~v on E and U L v on the

complement to E. B
(iii) If any of conditions (3.1)—(3.3) is violated, then S =0 P,P-a.s.

Remarks. (i) The expression in (3.2) is the Hellinger distance between v and v.
(i) If (3.2) is true, then f{l\mll<1} ||| d||v — V|| < oo, where ||v — || denotes the total

variance of the signed measure v — v (see [34; Rem. 33.3] or [35; Lem. 2.18]). Thus, the
integral in (3.3) is well defined if condition (3.2) is true.

Theorem 3.1, combined with Lemma 2.7, yields the following corollary. This result is
known (see [11], [12; Ch. IV, § 4c¢]|, [13], [21], [28], [29], [30], [39], [40], [41]).
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Corollary 3.2. (i) Either P=P orPLP.

(ii) We have P 1<0<C P if and only if conditions (3.1)~(3.3) and the condition v < v are
satisfied. B
(iii) We have Py L Pq if and only if any of conditions (3.1)—(3.3) is violated.

4 Separating Times for Bessel Processes

Consider the SDE
dXt :’)/dt—‘—Q\/ |Xt|dBt, XO = 29

with v > 0, 2o > 0. It is known that this SDE has a unique solution Q in the sense of
Definition 5.2. Moreover, the measure Q is concentrated on positive functions. A process
(Zt)te[(]’oo) with the distribution Q is called a square of a ~-dimensional Bessel process
started at \/zo. The process V/Z is called a -dimensional Bessel process started at NETE
For more information on Bessel processes, see [2], 3], [6], [32], [33; Ch. XIJ.

Let X denote the canonical process on C([0,00)). Consider the filtration F;, =
Neso 0(Xs; s € [0, +¢]) and set F =/, F;.

Theorem 4.1. Let P (resp., ﬁ) be the distribution of a ~y-dimensional (resp., 7-
dimensional) Bessel process started at xo. Then the separating time S for P and P has
the following form. B

(i) If P=P, then S=06 P,P-a.s.

(ii) If P £ P, then

S =inf{t € [0,00): X, = 0} P,P-a.s.
(we set inf () = co).

Proof. We should prove only (ii). Set 7o = inf{t € [0,00): X; = 0}. It follows
from [2; Th. 4.1] and the strong Markov property of Bessel processes that S < T, P, P-a.s.

Let us prove that S > T P,ﬁ—a.s. For xy = 0, this is obvious, so we assume that
xo > 0. Fix € € (0,79/2) and consider the stopping time 7. = inf{t € [0,00) : X; = ¢}.
Define the map F. : C([0,00)) — C([0,00)) by F.(w)(t) = w(t AT.(w)) and let P* denote
the image of P under this map. Using [to’s formula, one can check that P° is a solution
of the SDE
v—1
2X;
Let (Q', F',P') be a probability space with a Brownian motion (W}):cjo,00). Consider the
space (C(]0,00)) x ¥, F x F',Pe x P') and let Q° be the distribution of the process

dXt == I(t S TE) dt + I(t S TE) dBt, XU = 2.

¢
Zt:Xt+/ I(s > T.)dWs, te€]0,00).
0

Then QFf is a solution of the SDE

v—1
2X,

dX, = I(t <T.)dt+dB,, Xo=u.



Similarly, using the measure ﬁ, we define the measure Q° that is a solution of the SDE

F-1
2X,

dXt == I(t S TE) dt + dBt, Xo = Xy.

Since the drift coefficients %I(t <T.) and ;—;I(t < T.) are bounded, we get by Gir-
sanov’s theorem that (55 % Q°. The obvious equalities P = Q¢ o F;l and P° = (55 o F;l
yield that P P, One can verify that P¢| Fp,, = P|Fp, and P¢|Fp, = P|Fr,. . Conse-
quently, P|Fip,. ~ P|Fipp,. for any t € [0,00). Since ¢ € [0,00) and ¢ € (0,,/2) are
arbitrary, we get the desired inequality S > Ty P, P-a.s. The proof is completed. O

It is known that if 0 < v < 2, then a 7-dimensional Bessel process started at a
strictly positive point hits zero with probability one; if v > 2, then a ~y-dimensional
Bessel process started at a strictly positive point never hits zero with probability one.
Theorem 4.1, combined with Lemma 2.7 and with these properties, yields

Corollary 4.2. (i) Either P=P or P L P.
(ii) If P #P and xy =0, then Py L Py.

~ ~ loc
(iii) Let P # P and xy > 0. Then P < P <75 > 2.

This corollary generalizes the result of [2; Th. 4.1].

5 Separating Times for Solutions of SDEs

5.1. Basic definitions. We consider one-dimensional SDEs of the form
dXt = b(Xt) dt + U(Xt) dBt, XO = Ty, (51)

where b and o are Borel functions R — R and zg € R.
The standard definition of a solution, which goes back to L.V. Girsanov [9], is as
follows.

Definition 5.1. A solution of (5.1) is a pair (Y, B) of continuous adapted processes
on a filtered probability space (Q, G, (Gt)ie[0,00)5 Q) such that

i) B is a (G;, Q)-Brownian motion;

ii) for any t € [0, 00),

/0 (|6(Yy)| + 0*(Y;))ds < o0 Q-a.s.;

iii) for any ¢ € [0,00),

t t
Y, =29 + / b(Ys) ds +/ o(Ys)dB; Q-as.
0 0

Remark. A solution in the sense of Definition 5.1 is sometimes called a weak solution.

In what follows, it will be convenient for us to treat a solution as a solution of the cor-
responding martingale problem, i.e. as a measure on the space C(]0,00)) of continuous
functions. The corresponding definition goes back to D.W. Stroock and S.R.S. Varad-
han [43]. Let X denote the canonical process on C([0,00)). Consider the filtration
Fi =(\eso0(Xs; s €[0,t+¢]) and set F =\/, F;.
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Definition 5.2. A solution of (5.1) is a probability measure P on F such that
ii) for any ¢ € [0, 0),

/0 (B(X,)| + 02(X,))ds < 00 P-as.:

iii) the process
¢
Mt:Xt—/ b(X,)ds, t e [0,00)
0

is an (F;, P)-local martingale with the quadratic variation

(M), :/0 0*(X,)ds, te]o0,00).

The following statement (see, for example, [19; § 5.4.B]) shows the relationship between
Definitions 5.1 and 5.2.

Proposition 5.3. (i) Let (Y, B) be a solution of (5.1) in the sense of Definition 5.1.
Set P =Law(Yy; t € [0,00)). Then P is a solution of (5.1) in the sense of Definition 5.2.

(ii) Let P be a solution of (5.1) in the sense of Definition 5.2. Then there ezist a
filtered probability space (Q, G, (Gt)1efo,00): Q) and a pair of processes (Y, B) on this space
such that (Y, B) is a solution of (5.1) in the sense of Definition 5.1 and Law(Yj; t €
[0,00)) = P.

5.2. Exploding solutions. Definitions 5.1 and 5.2 do not include exploding
solutions. However, we need to consider them. Let us introduce some notations.

Let us add a point A to the real line and let Ca ([0, 00)) denote the space of functions
f:[0,00) = RU{A} with the property: there exists a time ((f) € [0, 00| such that f is
continuous on [0,¢(f)), f = A on [((f),00)), and if 0 < ((f) < oo, then limy¢ip) f(t) =
oo or limc(s) f(t) = —oo. The time ((f) is called the explosion time of f. Below in
this subsection, X denotes the canonical process on Ca([0,00)). Consider the filtration
Fi=Neso0(Xs; 5 €[0,24¢]) and set F = \/, F;. Let ¢ denote the explosion time of
the process X .

The next definition is a generalization of Definition 5.2 for the case of exploding
solutions.

Definition 5.4. A solution of (5.1) is a probability measure P on F such that
ii) for any ¢ € [0,00) and n € N such that n > |z,

tATh
/ (|6(X,)| +0*(X,))ds < 0o P-as.,
0

where 7, = inf{t € [0,00): |X;| =n} (we set inf() = c0);
iii) for any n € N such that n > |zg|, the process

tATh
MP = Xy — / b(X,)ds, t e [0,00)
0
is an (F, P)-local martingale with the quadratic variation

(M")t:/O " 02Xy ds, €0, 00).
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Clearly, if P is a solution of (5.1) in the sense of Definition 5.4 and ( = oo P-a.s.,
then the restriction of P to C(]0,00)) is a solution of (5.1) in the sense of Definition 5.2.
Conversely, if P is a solution of (5.1) in the sense of Definition 5.2, then there exists a
unique extension of the measure P to Ca([0,00)) that is a solution of (5.1) in the sense
of Definition 5.4.

Definition 5.5. A Borel function f : R — [0,00) is locally integrable at a point
a € [—oo,0q] if there exists a neighborhood U of a such that [, f(z)dz < co. (A
neighborhood of oo is a ray of the form (z,00); a neighborhood of —oc is a ray of the
form (—oo,).) Notation: f € Ll (a).

A function f is locally integrable on a set A C [—o0,00] if f is locally integrable at
each point of this set. Notation: f € L{ .(A).

Below we shall use the following result (see [7]).

Proposition 5.6 (Engelbert, Schmidt). Suppose that the coefficients b and o
of (5.1) satisfy the conditions:

o(z) #0Vr € R, (5.2)
L ;'M € LL.(R). (5.3)

Then, for any starting point xq € R, there exists a unique solution of (5.1) in the sense
of Definition 5.4.

For the information on the qualitative behaviour of the solution of (5.1) under condi-
tions (5.2) and (5.3), see the Appendix.
5.3. Explicit form of the separating time. Here we use the notations F, F;,
X, and (¢ introduced in Subsection 5.2.
Consider the SDEs
dXt = b(Xt) dt + O'(Xt) dBt, XO = Xy, (54)
dX, = b(X,) dt + 5(X,) dB,, Xo = g (5.5)

with the same starting point zy. Let us assume that conditions (5.2), (5.3) and the similar
conditions for b, o are satisfied.

Set
p(z) = exp{— /0:lC igiz; dy}, z €R, (5.6)
@)= [ pti)dn. aem 6:1)
s(o0) = mlg& s(x), (5.8)
s(—o0) = xli)r_noos(x). (5.9)

Similarly, we define p, 5, 5(c0), and $(—oc) through b and &. Let sy denote the
Lebesgue measure on B(R).
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We say that a point z € R is good if there exists a neighborhood U of x such that

0? =0% pp-a.e. on U and (b—b)?/o* € L (x). We say that the point oo is good if all
the points from [z, 00) are good and

s(00) < o0, (5.10)

€ Li. (o). (5.11)

We say that the point —oo is good if all the points from (—o0, zy] are good and

s(—o00) > —o0, (5.12)
(s — s(—o0)) L =0V

o € L (—00). (5.13)

Let A denote the complement to the set of good points in [—o0, 00]. Clearly, A is closed
in [—o0,00]. Let us define

A ={z € [-o0,00]: p(z, A) < e},

where p(z,y) = |arctgx — arctgy|, x,y € [—00,00] (we set ) =0).
The main result of this section is the following theorem. Its proof is given in Subsec-
tion 5.5.

Theorem 5.7. Suppose that b, o, b, & satisfy conditions (5.2) and (5.3). Let P
and P denote the solutions of (5.4) and (5.5) in the sense of Definition 5.4. Then the
separating time S for P and p has the following form.

(i) If P=P, then S=06 P,P-a.s.

(i) If P # P, then

S = supinf{t € [0,00): X, € AV} P P-a.s.

where “inf” is the same as “inf”, except that inf() = 6.

Remarks. (i) Let us explain the structure of S in case (ii). Denote by « the “bad
point that is closest to xq from the left side”, i.e.

. {sup{x cx € [—oo, o] N A} if [—o0, x4] , (5.14)

NnA
A if [—oo,z9] N A

Let us consider the “hitting time of a”:

(6 if a=A,
0 if « =—o00 and lim X; > —oc,
U=« ¢
¢ if a=—oc and lim X; = —o0,
¢
T, if a> —oc,

\
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where T, = inf{t € [0,00): X; = a}. Similarly, denote by v the “bad point that
is closest to zy from the right side” and denote by V' the “hitting time of v”. Then
S=UAV P,P-as. (This follows from Proposition A.1.)

(ii) Suppose that [zg,00) C [—o0,00] \ A. Combining Theorem 5.7 with results of
Appendix, we get that the pair of conditions (5.10), (5.11) is equivalent to the inequality
P{S =d}Nn(BLUCy)) > 0, where B, and C, are defined in the Appendix. By
the definition of a separating time, the latter condition is equivalent to the inequality
P{S=¢}Nn(B,UC,)) > 0. Applying once more Theorem 5.7 (to the measures P and
P rather than P and ﬁ) and results of Appendix, we get that this condition is, in turn,
equivalent to the pair

5(00) < o0, (5.15)
Go0) -9 € Lhufov). (5.16)

Thus, assuming that [z, 00) C [—o00, 00|\ 4, we get the equivalence between (5.10)+(5.11)
and (5.15)4(5.16). A similar remark is true for (5.12)4(5.13).

Theorem 5.7, combined with Lemma 2.7 and Propositions A.1-A.3, yields several
corollaries concerning the mutual arrangement of P and P. In order to formulate them,
let us introduce the conditions:

5(00) = o0, (5.17)
5(00) < 0o and %);%57 ¢ Li.(00), (5.18)
5(00) < 00 and (S(o0) — E)% € Li.(00). (5.19)

Condition (5.17) means that the paths of the canonical process X under the measure P
do not tend to co as t — oo (see Proposition A.2). Condition (5.18) means that the paths
of the canonical process X with a strictly positive IS—probability tend to oo as t — o0,
but do not explode into oo, i.e. the explosion time for them is oo (see Proposition A.2).
Condition (5.19) is the pair (5.15), (5.16). Similarly, we introduce the conditions at —oo:

$(—00) = —o0, (5.20)
5(—00) > —oo and §—§(T;oo) ¢ L (—00), (5.21)
(b— 1)

€ Li,.(—00). (5.22)

§(—o0) > —00 and (5 — 5(—00)) Ioc

pot
Corollary 5.8. Under the assumptions of Theorem 5.7, we have P<P if and only
if at least one of conditions (a)—(d) below is satisfied:
(a) P =P;
(b) (5.17), (5.22), and (5.23) are satisfied;
(c) (5.19), (5.20), and (5.23) are satisfied;
(d) (5.19), (5.22), and (5.23) are satisfied.

14



~ loc
Corollary 5.9. Under the assumptions of Theorem 5.7, we have P < P if and only
if the condition

2 _ ~2 (b—b)* 1
0°=0" up-a.e. and 1 € L,.(R), (5.23)
at least one of conditions (5.17)—(5.19), and at least one of conditions (5.20)—(5.22) are
satisfied.

Remark. The result of Corollary 5.9 is closely connected with the result of Orey [31],
where a criterion for the local absolute continuity of regular continuous strong Markov
families is provided.

Corollary 5.10. Under the assumptions of Theorem 5.7, we have PLP if and only
if P#P and —oo,00 € A.

Corollary 5.11. Under the assumptions of Theorem 5.7, we have ﬁo 1 Py if and
only if xo € A.

5.4. Examples. In this subsection, we give 9 examples, which show various types
of the mutual arrangement of P and P from the point of view of their (local) absolute
continuity, and singularity. The proofs are straightforward applications of Theorem 5.7
(it is convenient to use also Remark (ii) following Theorem 5.7). One should also take into
account the results on the qualitative behaviour of solutions of SDEs that are described
in Appendix. In particular, these results imply that a solution P of SDE (5.1) satisfying
condition (5.3) with o = 1, has the following properties:

If b is a constant in the neighborhood of +o00, then P({( < oo, limyu X; = +00) = 0.
If b is a strictly positive constant in the neighborhood of +o00, then P(lim;_,o, X; =
+00) > 0.

If moreover b is positive in the neighborhood of —co, then P(lim; o, X; = +oc) = 1.
If b(z) = 2? in the neighborhood of +o0, then P(¢ < oo, limye X; = +oc) > 0.

If moreover b is positive in the neighborhood of —oco, then P(¢ < oo, limy_y0o Xy =
+00) = 1.

In all the examples below, 0 = o =1, 79 = 0, and we specify only b and b.
We use the notation PAP to denote that P and P are in a general position, i.e.

PP, PLP,PLP.

Example 5.12. If

then

Example 5.13. If

then

loc

P<P, P£P, PLP.

15



Example 5.14. If

then

Example 5.15. If
b(z) =I(x >0)—I(x <0), bz)=1I(x>0)—2[(x<0),

then

PAP, PXP.

’

Example 5.16. If

b(z) =I(x >0)—2*I(x <0), blx)=I(x>0)—I(z<0),

then

PAP, PEP, PLP.

Example 5.17. If

then

Example 5.18. If

then

Example 5.19. If

then

Example 5.20. If

then
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Type of arrangement Example

P=P trivial

P # P, P~P Example 5.12

~ ~ loc ~
P<P,P£LP, PKP Example 5.13

P< P, P 1%(: p Example 5.14
ﬁAP, PXp Example 5.15
PAP. PSP, PLP | Example 5.16
PAP. PEP PLP Example 5.17
PLP, PP Example 5.18

PLP. PSP, PLP | Example 5.19

PLP,PLP PLP Example 5.20

Table 1. Various possible types of the mutual
arrangement of P and P (up to the symmetry
between P and P)

Examples 5.12-5.20 show that all the possible types of the mutual arrangement of P
and P can be realized. However, the lemma below shows that the types of the mutual
arrangement that appear in Examples 5.14, 5.16, and 5.19 can be realized only if P
explodes. (In Examples 5.12, 5.13, 5.15, 5.17, 5.18, and 5.20 the measures P and P do
not explode.)

~ loc loc ~
Lemma 5.21. Suppose that P does not explode and P < P. Then P < P.

Proof. Let S be the separating time for P and P. By Lemma 2.7, P(S > o) = 1.
It follows from Theorem 5.7, combined with Proposition A.3 (i), that all the points of
(—o0,00) are good. As P does not explode, P(S > oo) = 1. One more application of

loc ~
Lemma 2.7 yields P < P. O

Remark. Example 5.19 reveals an interesting effect. Suppose that we are observing
a path of the process X and are trying to distinguish between the hypotheses P and P
(given by Example 5.19). If P is the true hypothesis, we will find this out within a finite
time of observations. However, if P is the true hypothesis, we will find this out only
within the infinite time of observations.

5.5. Proof of Theorem 5.7. In the proof of this theorem, we use the techniques
of random time-changes and local times. These can be found in [33; Ch. V, § 1; Ch. VI,
§8 1,2]. Below we deal with the following two settings.
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Setting 1. Let X denote the canonical process on C([0,00)). Consider the filtration
Fir =Neso0(Xs; s € [0, +¢]) and set F =\, g o) Fi-

Setting 2. Let X denote the canonical process on Ca([0,00)) and ¢ denote the
explosion time of X. Consider the filtration 7, = (.. 0(Xs: s € [0,1 + ¢]) and set

F = VtE[U,oo) Fi.
We begin with a series of auxiliary lemmas.

Lemma 5.22. In Setting 1 or in Setting 2, consider an (F;)-stopping time 7. Let
w and w' be such that T7(w) = to € [0,00) and w'(s) = w(s) on [0,ty+¢] for some e > 0.
Then T(w') = to and, for any A€ F,, we€ A<= uw' € A.

This lemma may be proved by the standard technique. For statements with similar
proofs, see, for example, [12; Ch. III, Lem. 2.43|, [33; Ch. I, Ex. 4.21], [36; Ch. I, § 2,
Lem. 13].

Lemma 5.23. Let Y = (Y))icp0,c) be a continuous process on a probability space
(2,G,Q). Introduce the filtration G} = (N.ugo(Ys; s € [0,t +¢]). Let 7 be a (G))-
stopping time. Then there exists an (F;)-stopping time p such that 7 = p(Y'), where
(F;) denotes the filtration introduced in Setting 1.

This lemma may be proved similarly to [12; Ch. I, Lem. 1.19].

Lemma 5.24. Assume that the coefficients b and o of (5.1) satisfy conditions (5.2)
and (5.3). Let P be a solution of (5.1) in the sense of Definition 5.4 (so, we consider
Setting 2). Then Fy is P-trivial.

Proof. This is a consequence of the following result (see [43; Th. 6.2] or [18;
Th. 18.11]): if for any starting point zy € R, there exists a unique solution P,, of (5.1),
then the family (X;, F,P,;t € [0,00),2 € R) possesses the strong Markov property.
After applying this result one should note that any strong Markov family satisfies the
required zero-one law. O

Lemma 5.25. Assume that the coefficients b and o of (5.1) satisfy conditions (5.2)
and (5.3) and that the solution is nonexploding. Let P be a solution of (5.1) in the sense
of Definition 5.2 (so, we consider Setting 1). Then, for any (F;)-stopping time & such
that £ > 0 P-a.s., there ezists an (F;)-stopping time & such that 0 < & < & P-a.s.

Proof. 1) Define the functions p and s by formulas (5.6) and (5.7). Consider the
process Y = s(X). Due to the Ito-Tanaka formula (see [33; Ch. VI, Th. 1.5]), Y is
a continuous (F;, P)-local martingale with the quadratic variation (Y), = fot »*(Yy,) du,
where s(z) = p(s~}(z))o(s7(z)), * € s(R). Since o(z) # 0 for any =z € R, then
P-a.s. the trajectories of (V) are continuous and strictly increasing. Denote by F the P-
completion of the o-field F and by (F;) the P-completion of the filtration (F;). Define
an (F;)-time-change

7 = inf{s € [0,00): (V) > t}, t€]0,00). (5.24)

Consider an (F},P’)-Brownian motion W' on some stochastic basis (@', F', (F}),P’)
and set

QO=C([0,00) xQ, G=FxF, G=(Frp xFc. Q=PxP

e>0
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Denote by G the Q-completion of the o-field G and by (G;) the Q-completion of the
filtration (G;). Consider the stochastic basis (2,3, (G;),Q). All the random variables
and the processes defined on C([0,00)) or on ' can be viewed as random variables and
processes on (2. In what follows, we do not explain on which space we consider a random
variable or a process if this is clear from the context.
Set
W, =Y, + W,/ — W{A<Y>oo, t €[0,00). (5.25)

By the Dambis-Dubins-Schwartz theorem (see [33; Ch. V, Th. 1.6]), the process
W = (Wi)iep,0) is @ (G¢, Q)-Brownian motion with the starting point s(z).

As P-a.s. the trajectories of (Y) are continuous, we have (Y), =t P-as. on {t <
(Y)so}, ie.

/ ULV du=1 P-as. on {t < (V)u).

As P-a.s. the trajectories of (Y') are strictly increasing, then P-a.s. the trajectories of 7
are continuous (however, they may explode). By the change of variables in the Stieltjes
integral, we get

¢
/ 52V, )dr, =t P-as. on {t < (Y).},
0
and therefore,
t
T = / s 2(V,,)du P-as.on {t < (Y)w}
0

Since 7y — 00 P-as.as t T (V) and Y, = W, for t < (Y)s, we have
t
T = / ) 2(W,)du Q-as., t€][0,00) (5.26)
0

(here we set s(z) =1 for = ¢ s(R)).
Consider the filtration ;" = (..,0(W,; s € [0,¢ + £]) and let (ﬂfv) denote its Q-
completion. By (5.26), the process 7 viewed as a process on {2 is (ﬁfv)—adapted. Due

to (5.24),
(V) =inf{s € [0,00): 7, > t} P-as., t€][0,00).

Therefore, the process (V) viewed as a process on € is an (ﬁrv )-time-change. Further-
more, (5.25) implies that Y; = Wy, Q-a.s. Since the right-continuous and Q-complete
filtration generated by Y viewed as a process on €2 contains the filtration (F; x {0,Q'}),
we have o W
Fi x {0, Q) C Hyy,- (5.27)
The process 7 is an (F; x {0, Q'})-time-change. Tt follows from (5.27) (see also [33; Ch. V,
Ex. 1.12]) that
= 4 =W
For x {0, QY S Hypyy. SH, (5.28)
2) It is easy to verify that (V)¢ viewed as a random variable on  is an (F,, x {0, Q'})-
stopping time. By (5.28), (Y), is an (ﬁ:v)—stopping time. Since £ > 0 P-a.s., then

(Y)e > 0 Q-a.s. Furthermore, the o-field ﬁgv is Q-trivial; it is also well known that
every stopping time on a complete Brownian filtration is predictable. Hence, there exists

an (ﬁl}v)—stopping time 7 such that
0<n<(Y) Q-as. (5.29)
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It is known (see [12; Ch. I, Lem. 1.19]) that every stopping time with respect to a com-
pletion of a right-continuous filtration (K;) a.s. coincides with a (K;)-stopping time.
Therefore, we can choose 7 in such a way that it is an (H;")-stopping time. Due to
Lemma 5.23, there exists an (F;)-stopping time p such that

n=p(W) Q-as. (5.30)

Now, define the process V; =Y,,, t € [0,00). (Note that {r; = o0} = {(Y)s <t} P-as.
and on the set {(Y ), < oo} the process Y; tends P-a.s. to a finite random variable Y.
Hence, the process V' is well defined.) Equations (5.29) and (5.30) imply that p(WV) <
(V)s Q-a.s. Since V = W= Q-a.s., then, by Lemma 5.22, p(W) = p(V) Q-a.s. The
random variables p(V') and (Y'), are defined on C([0,00)). Hence, we can write

0<p(V)<(Y) P-as. (5.31)

Consider the filtration F) on C([0,00)) defined by the formula
F) =Nesgo(Vs; s €[0,£+¢€]).  Since the process V is F,-adapted and the fil-
tration F,, is right-continuous, we have F C F,. Consequently, p(V) is an
(F,)-stopping time. By [33; Ch. V, Ex. 1.12], 7,4, is an (F,)-stopping time. Due
to [12; Ch. I, Lem. 1.19], there exists an (F;)-stopping time &' such that ' = 7,y P-as.
Finally, (5.31) implies that 0 < ¢’ < £ P-a.s. O

Now, let us introduce some notations. Suppose that a,c € [—o0,00]. In Setting 1 or
in Setting 2, define

T, = inf{t € [0,00): X} = a}, (5.32)

Toe=Ty NT.. (5.33)

Note that if @ = —o0 or a = oo, then T, = oc. Similarly, for a process Y, we use the
notations

T.(Y) =inf{t € [0,00): Y, = a}, (5.34)

Toc(Y) =T,(Y) NT.(Y). (5.35)

Below in this section, we use the notations p, s, s(o0), s(—oo) introduced in (5.6)—(5.9).
Let us define the function 3¢ by the formula

sw(z) = p(s () o(sH(z)), =€sR). (5.36)

We need a more detailed version of the Engelbert-Schmidt theorem than Proposi-
tion 5.6 (see [7]).

Proposition 5.26 (Engelbert, Schmidt). Suppose that the coefficients b and o
of (5.1) satisfy conditions (5.2) and (5.3).

(i) Then, for any starting point xy € R, there exists a unique solution of (5.1) in the
sense of Definition 5.4.

(ii) Let P, denote this solution. Consider a  stochastic  basis
(2, G,(G1)icpo,00), Q) with a right-continuous and complete filtration. Let B be a
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(Gi, Q) -Brownian motion with the starting point s(x¢). Define the process (At)icio,00)
and the (G;)-time-change (7;)icjo,00) by the formulas

t  _9 :
By)d f1 < To(—o0),s(c0)(B )
&0 if ¢ > Ts(foo),s(oo) (B)a
7, = inf{s € [0,00): As > t}. (5.38)

Then
P, = Law(s’l(BTt); te [O,oo)‘Q),

where we set s7'(s(00)) = s71(s(—00)) = A.

Remark. Propositions A.1 and A.3 may easily be derived from the second part of
Proposition 5.26.

Lemma 5.27. Assume that the coefficients b and o of (5.1) satisfy conditions (5.2)
and (5.3). Additionally assume that s(o0) < oo. Denote by P the solution of (5.1) in
the sense of Definition 5.4 (so, we consider Setting 2). Let a < xy and f be a positive
Borel function such that f/o? € L}, .([a,00)).

(i) If (s(00) = 5)f/(po?) € Lige(00), then
/C f(Xy)dt < oo P-a.s. on the set {T, = oo}

(recall that ¢ denotes the explosion time of X).
(i) If (s(c0) — 5)f/(po®) ¢ Liy(00), then

¢
/ f(Xy)dt =00 P-a.s. on the set {T, = oo}.
0

Remark. Due to Proposition A.1, limy X; = oo P-a.s. on the set {7, = co}. There-
fore, Lemma 5.27 deals, in fact, with the convergence of some integrals on the trajectories
that tend to oo or explode to oo. Clearly, this lemma has its analog for the trajectories
that tend to —oo or explode to —oc.

Proof of Lemma 5.27. We prove only the first part. The proof of the second one is
analogous.

Consider a stochastic basis (€2, G, (Gt)ic[0,00), Q) With a right-continuous and complete
filtration and let B be a (G, Q)-Brownian motion with the starting point s(xg). Define
the process (A;)ico,00) and the (G;)-time-change (7;)cjo,00) by formulas (5.37) and (5.38).
Set & = AT ~oo)s(o0) (B)—

Propos1t10n 5.26 yields that the convergence of the integral fo f(Xy)dt P-a.s. on the
set {T, = oo} is equivalent to the convergence of the integral fo f(s7'(B,,))dt Q-a.s. on
the set {T(o0)(B) < Ty@a)(B)}. By the change of variables in the Stieltjes integral, we get

/ f 71 Tt dt / f 71 Tt dATt / f ! Bt dAt

5(—00),s(00) (B)
:/0 (—00).s(00) 2f (s 1(B) dt.
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Set

o(x) = L (@), = es(®).

0202

Since Ts(,oo)’s(oo)(B) = Ts(oo)(B) on the set {Ts(oo)(B) < Ts(a)(B)}, then the problem
reduces to investigating the convergence of the integral fOTS(‘X’)(B) 9(B;) dt Q-a.s. on the
set {Ts(oo)(B) < Ts(a)(B)}.

Since (s(oc) — s)f/(po?) € LL.(o<), then

5(50)
de>0: / (s(o0) — 2)g(z) dx < 0.

(00)—¢

As f/o* € L] (Jla,0)), we have g € L] ([s(a),s(c0))). Now, we need to use the results
of the paper [2], where the convergence of some integrals associated with Bessel processes
is investigated. By [2; Th. 2.2],

Ts(a)(s( )7Y)
/ g(s(o0) = Y)dt < oo R-as.,
0

where Y is a three-dimensional Bessel process started at zero and defined on a probability
space with a measure R. Set Z; = s(c0) — Y}, t € [0,00). Then

Us(z )(Z)
/ " g(Z)dt < 00 Reas. on the set {Uywy)(Z) < Tow (Z)}
0

where we use the notation U.(Z) = sup{t € [0,00): Z; = c¢}. Now, the Williams theorem
(see [33; Ch. VII, Cor. 4.6]), combined with the last formula, yields

Ts(oo)(B)
/ g(By) dt < oo Q-a.s. on the set {Ty)(B) < Tya)(B)}-
0

This completes the proof. O

In what follows, p; denotes the Lebesgue measure on B(R).

Lemma 5.28. Assume that the coefficients b and o of (5.1) satisfy conditions (5.2)
and (5.3). Additionally assume that s(—oo0) = —oo and s(o00) = co. Denote by P the
solution of (5.1) in the sense of Definition 5.4 (so, we consider Setting 2). Let f be a
positive Borel function such that pp(f > 0) > 0. Then

/OO f(Xy)dt =00 P-a.s.
0

(Let us recall that, by Propositions A.1 and A.2, { = 0o P-a.s. whenever s(co) = 0o and
s(—o0) = —00.)

Remark. Lemmas 5.27 and 5.28 complement each other. Indeed, Lemma 5.27 deals
with the convergence of some integrals on the trajectories that tend to oo (or to —o0),
while Lemma 5.28 deals with the convergence of some integrals on the trajectories that
are recurrent.

Proof of Lemma 5.28. Using a reasoning similar to that of the previous lemma,
we see that we need to prove the equality fooog(Bt) dt = oo Q-a.s., where g(z) =
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pQJ;Q (s7'(z)), * € R, and B is a Q-Brownian motion defined on some probability space.

It is known that local times of a Brownian motion satisfy L? (B) = oo for all z € R
(see [33; Ch. VI, Cor. 2.4]). By the occupation times formula (see [33; Ch. VI, Cor. 1.6]),

/Ooo 9(B) dt:Ag(m)L;(B) dr = 00 Q-as.

The proof is completed. 0

Let Y be a continuous semimartingale on some stochastic basis. Below in this section,
we use the notation LT(Y) (t € [0,00), x € R) for the local time of a process Y spent at
a point a by a time t. We take versions of local times that are cadlag in = and use the
notation Ly~ (Y) := lim, o L{°(Y).

Lemma 5.29. Assume that the coefficients b, o and 5, o of (5.4) and (5.5) satisfy
conditions (5.2) and (5.3) and that the solutions are nonexploding. Let P and P be the
solutions of (5.4) and (5.5) in the sense of Definition 5.2 (so, we consider Setting 1).
Suppose that the condition

Ve >0, pr((wo —g,m0 + &) N {o? #5%}) >0 (5.39)
or the condition _
(b —0)?
v
ES satisfied. Then ﬁ(] L Py (let us recall that Py and ﬁo denote the restrictions of P and
P to the o-field Fy).

¢ Llloc(x(]) (540)

Proof. 1) Let us first assume that condition (5.39) holds. By the occupation times
formula (see [33; Ch. VI, Cor. 1.6]),

t

t
/I{UZ;é??}(Xu)UQ(Xu)dUZ/ 1{02¢52}(Xu)d<X>u
0 0
:/RI{U27£32}(.ZU)L§:(X) dx P-a.s.

It follows from [4; Th. 2.7] that L{*(X) > 0 and L;°"(X) > 0 P-as. for any ¢ > 0.
Therefore, for any ¢ > 0,

t
/ Lo (Xu)o?(Xu) du > 0 P-as,
0

Hence, for any ¢t > 0,

P (30< s < t: /302(Xu)du7é/862(Xu)du> =1,
0 0

and consequently,

P<Vt>05|0<s§t: /SUQ(Xu)du¢/552(Xu)du) —1 (5.41)
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Let us recall that P-quadratic variation (resp., ﬁ—quadratic variation) of X at time
s equals [ 0(X,)du P-as. (vesp., [; 0*(X,)du P-as.). Therefore, for any sequence
(A,) of subdivisions of the interval [0, s] whose diameters tend to 0, we have

/ 0*(X,) du=P- lim > (X, - X,,_,)’
0 n—oo tieAn

and .
/0 6°(X,) du = P- lim > (X - X))

t; €Ay

Now, consider all rational times s. By extracting a.s. converging subsequences and
using Cantor’s diagonal method, we see that (5.41) implies the desired result Py L Py.

2) Assume now that condition (5.40) holds. Denote by S the separating time for P
and P. Due to Lemma 5.24, the o-field F; is trivial with respect to each of the measures
P and P. Combining this with Lemma 2.7, we obtain that either S = 0 P,P-a.s. or
S >0 P,P-a.s. Let us prove that the second variant is not possible. B

Suppose, on the contrary, that S > 0 P,P-a.s. (or, equivalently, Po £ Py). By
Lemma 5.25, there exist stopping times 7' and 7" such that 0 <7’ < S P-as. and
0<7"<S P-as. Set 7 = 7' A7". Then it follows from our assumption P, £ Py and
from the fact that Fy is both P- and P-trivial that 0 <7 < S P,P-a.s. Hence, P, ~ P,.

Consider the cadlag (F;, P)-martingale

dP,
Z;,=E .
t P(dPT ft>, tE[0,00)
Notice that Z is a uniformly integrable martingale with a limit Z,, = Z%. Since

Zs >0 P-as., the processes Z and Z_ are strictly positive P-a.s. (see [12; Ch. III,
Lem. 3.6]). Set

t
1
Lt:/0 7 dZ,, te0,00).

The (F;, P)-local martingale L is well defined. Clearly, we have Z = Z,E(L) (i.e. Z
is a stochastic exponent of L). Since P is a unique solution of (5.4), any (F;, P)-local
martingale is a stochastic integral with respect to the local martingale Y (see [12; Ch. III,
Th. 4.29]), where Y is the continuous martingale part of the (F;, P)-semimartingale X,
ie.

t
Vi =X, —/ b(X,)du, tel0,00).
0
In particular, there exists a predictable process [ such that

t
/ B2d(Y), <00 P-as., tc0,00)
0

and .
Lt:/ BudY, P-as., te€]l0,00).
0

This yields that the process L is continuous.
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Consider the measure Q = Z, - P. Then Q, = ﬁT. It follows from Girsanov’s
theorem for local martingales (see [12; Ch. III, Th. 3.11]) that the process Y — (Y, L) is
an (F;, Q)-local martingale. We have

t t
(Y,L), :/ Lud{Y )u :/ B.o*(X,)du P-as., te]0,00).
0 0
For any t € [0, 00), set

Ny — / (b(X,) + Buo®(X.)) du if / (1b(X,)]
+|Bu|o?(Xy)) du < oo,

00 otherwise.

Mt:

The process M is finite and continuous with respect to P. Hence, it is finite and contin-
uous with respect to Q. Since Q, = P, and M, is F,-measurable for any ¢ € [0, 00), the

process M is finite and continuous also with respect to the measure P. Furthermore, as
M= (Y —(Y,L))” Q-as., M is an (F;, Q)-martingale. Consider the stopping times

nn, = inf{t € [0,00): |M;| > n}, neN

Clearly, 7, T oo P,P-a.s. and M"™ is an (Fi, Q)-martingale for any n € N. Since
Q, = P,, then, for any s <t and B € F,, we have

Es[Ip(M" — M™)] = Es[Ipn{s<ry (M]" — M™)]
= Eq[In{s<r} (M{™ — M")]
= Eq[Ip(M/™ — M")] = 0.

Hence, M is an (Ft,ﬁ)—local martingale. Consequently, as P is a solution of (5.5), the
process

tAT tAT AT
N, = / b(X,) du+ / B0?(X,) du — / b(X.) du, € [0,00)
0 0 0

is well defined with respect to P and is a continuous (F, ﬁ)—local martingale of locally
bounded variation. This means that N =0 P-a.s. Thus, we have

- tAT AT
P (w € [0, 50): / (B(X.) + Buc®(X,)) du :/ h(X,) du) —1.
0 0
As 57 ~ P., we get

p (Vt € [0, 0), /0 V) + Buo?(X.) du = /0 ) du) —1. (5.42)

Now, let us recall that L;y°(X) > 0 and L{°"(X) > 0 P-a.s. for any ¢t > 0 (see [4;
Th. 2.7]). Then it follows from the occupation times formula and (5.40) that, for any

t>0,
[ a0 a),

_ /R b= b s (X)de = 0 Poas.

ot
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Thus,

P (w € (0,00): /t (b _Qb)Q(Xu) du = oo) =1. (5.43)

o

Let us recall that 7 > 0 P-as. and [ 820%(X,)du < oo P-as., t € [0,00). Therefore,
conditions (5.42) and (5.43) contradict each other. As a result, S = 0, which means that
Po L Pg. a

Lemma 5.30. Assume that the coefficients b, o and E, o satisfy conditions (5.2)
and (5.3). Let P and P be the solutions of (5.4) and (5.5) in the sense of Definition 5.4
(so, we consider Setting 2). Let a and ¢ be real numbers such that —oo < a < xg < ¢ < 00
and [a,c] C [—o0, 0]\ A (recall that A denotes the complement to the set of good points).
Then fISTa,C ~ Pr,, and

dP Tochy— b 1 [Tee (b— b)?
Toc — exp / (X,)dY, — = / (b=9b) (X,)du (5.44)
dPr,.. 0 2 Jo 2

o

where the integrals are taken with respect to the measure P and Y is a continuous (Fy, P) -
local martingale defined by the formula

ATy
Yi = X, — / b(X,) du, € 0,00).
0

Remark. Since P is a solution of (5.4), then Y is an (F;, P)-local martingale with the
quadratic variation

ATy e
<y>t:/ o2(X,) du, € [0,00).
0

Hence,

/Ta,c (’5 — b)? (X,) du = /Ta,c (E —b)? (X,)d(Y), P-as. (5.45)

o2
Let us show that this integral is finite P-a.s. By the occupation times formula (see [33;
Ch. VI, Cor. 1.6]),

/0 O ) ayy, - /0 TSI e agxe,

g o

b — b)?
:/( ) (2)L%, (X"**)dz P-as.
o :

ot

(We consider the local time of the process X7« rather than of X because X may

explode.) Since [a,d] C [—00,00]\ 4, then (b—b)%/c* € L. ([a,c]). As P-a.s. the process

loc
(L, (XTa¢))er is equal to zero outside [a, c], we have

/ PO gy, < o Poas (5.46)

o

Proof of Lemma 5.30. 1) Since A is a closed subset of [—o0, o], there exist a’ and
¢ such that —oo < @’ < a, ¢ < ¢ < o0, and [d', ] C [—o00,00] \ A. Let us define a
continuous (F, P)-local martingale Y’ by the formula

t/\Ta/,C/
Y = X, —/ b(X,)du, te€][0,00).
' 0
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Note that

Ta11C/ b o b 2 -
/ ( ) (X,)du < oo P,P-as. (5.47)
0

o2
(This follows from the analogs of (5.45) and (5.46) for the process Y instead of Y'.) Fix
an arbitrary n € N, n > 1. Consider the stopping time

T:inf{te [0,00): /t@;fb)?()(u) duzn} (5.48)

(we set @;—SV(A) =0). Consider a continuous (F;, P)-local martingale

tAT 1 o AT ’5 —} /
L, = (X,)dY!, tel0,00) (5.49)
0

o2

(L is well defined due to (5.47)). We have

1 1 Tyr ot AT ~_ 2
Ep exp{§<L>oo} =Ep exp{§/0 (b 2b) (Xy) du} <e? < .

o

By Novikov’s criterion, the process Z = E(L) (i.e. Z is the stochastic exponent of L) is
a uniformly integrable (F;, P)-martingale. Due to Girsanov’s theorem for local martin-
gales (see [12; Ch. III, Th. 3.11]), the process Y’ — (Y’ L) is a continuous (F;, Q)-local
martingale, where the probability measure Q is defined by the formula Q = Z, - P. Note
that for any ¢ € [0, 00),

t/\Ta/,cl/\T~

t/\Ta/,C/
Y/ = (Y, Ly = Xona, , — / b(X,) du — / (b—b)(X,)du Q-as.
' 0 0
Consider the process
t/\Ta/,c//\T~

M, = Xt/\Ta/ JAT T / b(Xu) du, tEe€ [0, OO) (550)
’ 0

It is well defined with respect to Q and M = (Y’ — (Y', L))" Q-a.s. Therefore, M is a
continuous (F, Q)-local martingale with the quadratic variation

t/\Ta/’C//\T
(M), = / o2(X,) du, € [0,00).
0
Using the occupation times formula and the fact that 0? = 6% pg-a.e. on [d', ], we get

t/\Ta’,c’/\T
(M), = / F(X,) du, € [0,00). (5.51)
0

2) Let us define the functions p, 5, and 3 through b and & similarly to (5.6), (5.7),
and (5.36). Consider the process N = 5(X'«.<'7). By the Ito-Tanaka formula (see [33;
Ch. VI, Th. 1.5]) applied under the measure Q,

T 1 AT

t
Ntzg(xo)qL/ﬁ(Xu“*c VdM,, te[0,o00).
0
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Hence, N is a continuous (F;, Q)-local martingale with the quadratic variation
t/\Ta’,c’/\T
W= [ RO du e foioo)
0

Since o(x) # 0 for any = € R, we have that Q-a.s. the trajectories of (V) are continuous
and strictly increasing up to the time 7 » A 7 and they are constant after T o A 7. Let
F denote the Q-completion of the o-field F and (F;) denote the Q-completion of the
filtration (F,). Define an (F;)-time-change by the formula

& =inf{s €[0,00): (N)s >t}, te€]0,00).

Consider an  (F/,P’)-Brownian motion W’ on a stochastic basis
(Y, F', (F]),P'") and set

Q=Ca(0,00)) xQ, G=FxF, G=()Fep. xFly.. R=QxP"

e>0

Denote by G the R-completion of the o-field G and by (G;) the R-completion of the
filtration (G;). Consider the stochastic basis (€, G, (G;),R). All the random variables
and the processes defined on Ca([0,00)) or on Q' can be viewed as random variables and
processes on (2. In what follows, we do not explain on which space we consider a random
variable or a process if this is clear from the context.
Set
Wi = Ng, + W/ =W/ ny, t€[0,00).

By the Dambis-Dubins-Schwartz theorem (see [33; Ch. V, Th. 1.6]), the process
W = (Wi)iepo,00) is @ (G¢, R)-Brownian motion with the starting point 5(x).
As Q-a.s. the trajectories of (N) are continuous, we have

(N)e, =t Q-a.s. on the set {t < (N)oo},

1.e.

&t
/ 57*(N,)du=1t Q-as.on the set {t < (N)y}.
0

As Q-a.s. the trajectories of (V) are strictly increasing up to the time T,y » A 7, we have
that Q-a.s. the trajectories of & are continuous up to the time (N), . By the change of
variables in the Stieltjes integral, we get

t
/ 37*(Ne,) déy =t Q-a.s. on the set {t < (N)s},
0

and hence,

t
& = / 5 %(Ng,)du  Q-a.s. on the set {t < (N)u}.
0

Clearly, £ = oo whenever t > (N),,. Therefore, R-a.s. for any ¢ € [0, 0c),

(- [1372 (W) du if t < (N)e,
" if > (N
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Using the occupation times formula, it is easy to verify that P-a.s. we have

Vi < (N)o, /& (b b’ (X,) du = /& (b~ b (X,) du.

0 o?

By the change of variables in the Stieltjes integral, R-a.s. we get

. &2 52

Yt < (N}, /& (b-b? du:/& (b= = 1(x)) du

N /1t * :26)2 (57 (Ne,)) déu (5.52)

g
fh-b?
— S (W) du.
= UL
Letting t 1 (N)s in (5.52), we get
Ta’,c’/\T g_ b 2 <N>oo E_ b 2 N
/ ( : ) (X,) du:/ %(sfl(wu))du R-a.s. (5.53)
0 o 0 po

Set

n(W) = inf {t € [0,00): /Ut (bﬁ;;l)Q (3 7YW,)) du > n}

(we set (E;Qf (57 (x)) = 0 if z ¢ 5(R)), where n is the number that appears in (5.48).
Let us now prove the equality

(N)oo = Ty 5(H)(W) An(W)  R-aus. (5.54)

For this, note that

Tal,cl/\’T (b _ b)2
(Xy)du=mn P-as. on the set {7 < Ty ~}. (5.55)
0

o2

Indeed, condition (5.55) may be violated only if the integral is less than n and the process

(fot (b;f)2 (X“)du)te[o,oo) jumps to infinity at time 7. But P-a.s. this cannot happen
on the set {7 < Ty o} since (5.47) holds. Moreover, as {ny, - = Tw . AT, we have
(N)oo > Ty 5()(W) R-a.s. on the set {Tyy » < 7}. By (5.53) and (5.55), (N)se > n(W)
R-a.s. on the set {7 < Ty +}. Thus, (N)e > Tia)5ey(W) An(W) R-a.s. Finally, the
reverse inequality easily follows from (5.52). So, statement (5.54) is proved.

It follows from the reasoning above that R-a.s. for any ¢ € [0, 00),

t
¢ / %_Q(Wu) du ift < Tg(a/),g(cf)(W) A ?7(W),
t = 0
0] if ¢ Z Tg’(al)’g’(cl)(W) A\ 77(W)
Let us recall that

(N) =inf{s € [0,00): & >t} Q-as., te€[0,00),
Nt = W<N>t R—a.s., te [0, OO),
XTore AT = F7H(N).
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So, we obtain an explicit construction of the measure LaW(XTa’ﬁC’AT‘Q) through the
Wiener measure. Furthermore, as P is a solution of (5.5), the process M introduced
in (5.50) is a continuous (F;, P)-local martingale with the same quadratic variation as in
formula (5.51). Therefore, repeating the reasoning of part 2) with the measure P instead

of Q, we obtain that the measure Law (XT’ ’AT‘P can be constructed from the Wiener
measure in the same way as Law XT’ ’/\T‘Q Thus,

Law (X7 "7|P) = Law (XT"7|Q). (5.56)

3) Consider the stopping time
t E_ b 2
p:inf{te[(],oo):/( 2)(Xu)du2n—1},
0o O

where n appears in (5.48). Using (5.55) and the analogous condition for the measure P,
we get T Ap < Tyo AT P, P-a.s. Applying Lemma 5.22, we obtain that P, P-a.s. for
any event B € Fr, p,

X € B X" € B.
Then, due to (5.56), for any B € Fr, .a,, We have

P(B) = P(XeB) = P(X"w.«"" e B) = Q(XT«" € B) = Q(XeB) = Q(B).

Consequently, the measures Q and P coincide on the o-field Fr,.np- Let us now recall
that Q = Z. - P, where the uniformly integrable (F;, P)-martingale Z is defined by the
formula Z = £(L) and L is defined in (5.49). Hence, P, A, ~ P, 1, and

dPr, .np
dPr, .np

= Ep(Zoo|FT, np) = 27, o1 (5.57)
4) Now, let us use the notation

T :inf{t € [0,00): /1t (5_26)2(Xu)du > n} neN.

(We fixed some n € N above and considered stopping times 7, and 7, 1, which were
denoted by 7 and p for the simplicity of notation. Below we need to use all 7,,. That is
why we now change the notation.) By (5.57),

dP . Ta,c/\TnN _ 1 Ta,c AT T _ 2
AP, onr, :exp{ / b= by yayr - L / (b=b) (Xu)du}. (5.58)
0 0

o? 2
It follows from (5.47) that

lim 7, > Ty > Ty, P,P-as. (5.59)
n—o0

As a consequence, we get

fTa,c = \/ fTa,c/\Tn (560)
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up to events of P,ﬁ—zero measure. (Indeed, the inclusion Fr, . C /", Fr, .z, follows
from the formula

B=|JBN{T,.=T,.A1}) P,P-as,
n=1

and the reverse inclusion is obvious.) Formulas (5.58), (5.59), and (5.60) imply that

dPr, Toch—b 1 [Tee (b —b)?
L= X,)dy! — = Xy)du p, 5.61
e p{/ Sy [ R (5.61)
where by ZE;‘” we denote the density of the absolutely continuous part of the measure

dPr, .
dPr, .

to the symmetry between P and IS, ﬁTa,C < P, .. Thus, ﬁTM ~ Py, . and the density of

ISTM with respect to Pr, . is given by formula (5.61). Finally, it is clear that the process
Y’ in (5.61) may be replaced by Y. O

ISTM with respect to the measure Pr, . Since >0 P-as., we get Pr, < ﬁTa,c- Due

Before passing on to the proof of Theorem 5.7, we need one more technical lemma.

Lemma 5.31. In Setting 2, consider a € R and a sequence (c,) such that ¢; > a,
Cnt1 > Cn, and ¢, T oo. Then Fr, =\, Fr,.. -

Proof. Consider the collection D of sets B € F such that
BN Ta:oo,EX:oo € Fr, . .
{ i ! n\:/l Tasen
Notice that

T, = 0o, lim X; = oo} = X (T, <o0)=c,} €\ Fr, .. . 5.62
{ im Y, }Q{T’"(’ ) }n\:/lT,n (5.62)

Now, one can easily check that D is a o-field. Since for any ¢ € [0,00) and d € R,

(X, <d}n{T, = oo,%xt = oc}

- [ G ({Tue. >t} N {Xinz,,., < d})

n=1

N{T, = oo, lim X; = oo},
¢

then by applying (5.62), we obtain D = o(Xy; t € [0,00)) = F.
Now, the inclusion Fr, C /", Fr,. follows from the formula

B=|JBn{T.=T.,})| v (BN{T. = oo,%Xt = c0}),
n=1
and the reverse inclusion is obvious. O

Proof of Theorem 5.7. We should prove only (ii). Therefore, below we assume that
P #P. Set o
T =supinf{t € [0,00): X; € AY/"}.
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Let us prove that the separating time S equals 7. Denote by « the “bad point that is
closest to zy from the left side” (see (5.14)). Similarly, denote by  the “bad pint that is
closest to xy from the right side”. It is convenient for us to set

o =

, —oo ifa=A
Q if a 2 A

and

,  Joo ify=A,
L PYRRETIMN

If g ¢ A (or, equivalently, o' < xy < '), then we consider sequences (a,) and (c,) such
that a1 < xg < ¢1, Apy1 < @y, ay L &', Cuy1 > ¢y, and ¢, T4

The proof consists of two parts.

I. Let us first prove that S > 7 P, P-a.s. If x9 € A, then 7 = 0 and this inequality is
obvious. Therefore, we consider the case zy ¢ A. By Lemma 5.30, Py, . ~ Py, for
any n € N, and hence, S > Ty, .. P,ﬁ—a.s.

Suppose that o # A and v # A. Clearly, in this case T, ., T 7 P,ﬁ—a.s.. Thus, we

obtain the desired inequality S > 7 P,P-a.s.

Suppose now that « = A or v = A. In this case T, . T 7A( P, ﬁ—a.s., and hence,

S>7A¢ P, P-as. (5.63)
It is easy to establish that
{r>¢}=B_,UBy, P,Pas., (5.64)
where

B - {limye Xy = —oo} N{VE < (: X; <7} ifa=A,
e if @ # A,

B — {limye Xy =00} N{VE < (: Xy >/} ify=A,
R if v # A.
Let us prove that P ~ P on the set B If v # A, then this is obvious. Therefore, we

consider the case v = A. Fix a € (¢/, z9) and define continuous (F;, P)-local martingales
Y™ L™ and Z" by the formulas

tA\Tq cp,
N / WX, du,  te0,00),
0
AT, 7
ven B — b
o= / (X dvy t € [0,00),
0
1
7 = e {1t - I e [0,00).

Note that the process L™ is well defined with respect to the measure P (see the Remark
following Lemma 5.30). Clearly, Z™ = £(L") (i.e. Z" is the stochastic exponent of L™).
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Set T'=1T,N(. Since T, TT P-as. and

Lyt = L7 P-as. on the set {t < T, 1},
Z;n+1 = Z;n P-a.s. on the set {t < Ta,cn}:

we can define continuous (F;, P)-local martingales L and Z on the stochastic interval
[0,T) (for the definition of a process on a stochastic interval, see [33; Ch. IV, Ex. 1.48])
such that

L, =L} P-as.on theset {t <T,.,},
Zy =2 P-as. on the set {t < T, }.

Notice that

7, = exp {Lt _ %(L)t} e[0T

and

t (7 2

b—b

o= [ CE ) au e,
0o O

Since Z is positive, it converges P-a.s. as t T T to a finite random variable Zz (this

follows from the Dambis-Dubins-Schwartz theorem for continuous local martingales on a

stochastic interval; see [33; Ch. V, Ex. 1.18]). Hence, Z;, ., — Zp P-a.s. Furthermore,

due to Lemma 5.30, Zr, AP Ta e , and due to Lemma 5.31, Fr, =/, Fr,. . By the

T dPr, .,

Jessen theorem (see [42; Th. 5.2.26]), Zr is the density of the absolutely continuous part

of the measure Pp, with respect to the measure Pr, .

Applying Lemma 5.27 to the function f = (b—b)2/0?, we get (L) < oo P-a.s. on the
set {T, = oo} (recall that we consider the case v = A, i.e. oo is a good point). Clearly,
(L)y < oo P-a.s. on the set {1, < oco}. Hence, (L)r < oo P-a.s. It follows now from
the Dambis-Dubins-Schwartz theorem for continuous local martingales on a stochastic
interval that Z; > 0 P-a.s. Consequently, P, < P, .

Since oo is a good point, s(co) < oco. By Proposition A.3, P(T, = o) > 0. As
P, < Pr,, we get P(T, = c0) > 0. Hence, 3(cc) < co. Now, let us prove that the
condition

(b—b)*

pot

(3(c0) = 3) € L (00). (5.65)
holds. For this, apply the above reasoning to P instead of P. Define continuous (F, ﬁ)—
local martingales L and Z on the stochastic interval [0,T") similarly to the processes L
and Z. Then ZT is the density of the absolutely continuous part of the measure Pr,
with respect to the measure ﬁTa . If condition (5.65) does not hold, then, by Lemma 5.27,
(L)p = 0o P-a.s. on the set {T, = co}. Due to the Dambis-Dubins-Schwartz theorem
for continuous local martingales on a stochastic interval, we have lim ;. L, = —oc P-as.

on the set {T, = co}. Hence, P-a.s. on the set {T, = oo} we get

_ _ -1 -
Zr = lim Z; = exp {li_mLt - _<L>T} = 0.
HT HT 2

As a consequence, ISTG L Pz, on the set {T, = oo}, which contradicts the conditions
P, < Pz, and P(T, = c0) > 0. Hence, condition (5.65) holds.
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Since 5(oc) < oo and condition (5.65) holds, we can repeat the above reasoning using
the processes L and Z instead of L and Z. As a result, we get Zr >0 P- a.s., and
therefore, Py, < Pr,.

Thus, P7, ~ Pz, . Hence, P ~ P on the set {T, = oc}. Since a € (o, o) is arbitrary,
and in view of the fact that the sets {7, = oo} tend to By P, P-as. as a | o, we get

that P ~ P on the set B, . Similarly, P ~ P on the set B_. Consequently, S=9
P.P-as. on the set B_y U By. Combining this with (5.63) and (5.64), we obtain the

desired inequality S > 7 P,ﬁ—a.s.
I1. Let us now prove that S < 7 P,P-a.s. Consider several cases.
1) Suppose that zq € A. Set

V(z) = b(x)[gg—2,20+2 (), = €R,
)I[mo—Q,mo-I-Q} (:E), S Ra
x), x€R,

and consider the SDEs

dX, = V(X)) dt + o'(X,) dB,,  Xo = o, (5.66)
dXt = b”(Xt) dt + O'”(Xt) dBt, XO = 2y. (567)

The coefficients 0, ¢’ and V", o” satisfy conditions (5.2) and (5.3). Let P’ and P”
denote the solutions of (5.66) and (5.67) in the sense of Definition 5.4. By [4; Th. 2.11],
Pryc1gn = P’TmO voger A Py L= P%EOA,EOH. It follows from Propositions A.1
and A.2 that P and P” do not explode. Due to Lemma 5.29, Py L Pj. Therefore,

PUJ_PU, and hence S =0 P, P-a.s.

2) Suppose that —oco < a < zp < 7 < oco. Then 7 = T,, P,P-a.s. Since
T, < oo P, ﬁ—a.s., then, using the strong Markov property of solutions of SDEs (see [43;
Th. 6.2] or [18; Th. 18.11]) and the result of 1), we obtain that ’I5TM L Pz, . Hence,
S<T,,=T71 P,ﬁ—a.s.

3) Suppose that —co < a < g, 7 = 00. Then 7 =T, A ( P,ﬁ—a.s. Therefore, we

need to prove that _
S <T, P,P-as. on the set {T, < oo} (5.68)

and B
S < (¢ P,P-as. on the set {T, = oo}. (5.69)

Condition (5.68) holds due to the strong Markov property of solutions of SDEs. Prior to
proving (5.69), let us notice that F, = F. Hence, Froac = Fr, N Fc = Fr,, .

If s(c0) = 00, then P(T, = o0o) = 0. Therefore, ﬁTa/\( L Prac on the set {T}, = co}.
Consequently, S < T,A( P, P-a.s. on the set {T,, = oo} and it follows that (5.69) holds.

Finally, let us prove (5.69) in the case, where s(co) < oo. For this, fix a € (o, ),
set T =T, A (, and consider the continuous (F;, P)-local martingales L and Z on the
stochastic interval [0,7") introduced in part I of the proof. By Lemma 5.27, (L); = oo
P-a.s. on the set {T, = oo} (recall that here oo is a bad point). Due to the Dambis-
Dubins-Schwartz theorem for continuous local martingales on a stochastic interval, we
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have lim y Ly = —oc P-a.s. on the set {7, = oc}. Hence, P-a.s. on the set {7, = oo}
we get
1
Zr = lim Z; = exp {li_mLt - _<L>T} =0.
?T ?T 2
Since Zr is the density of the absolutely continuous part of the measure ﬁTa with respect
to the measure Pr,, we have Py, L Pp, on the set {T, = co}. As Fr,ac = Fr,, we get
Pr,a¢c L Prac on the set {T, = co}. Hence, S < T, A( P,P-as. on the set {T, = oc}.
Since a € (a, ) is arbitrary, condition (5.69) is satisfied.
In a similar way, we consider the case, where a = —o0, 19 < 7 < 00.
4) Suppose that —oco < a < 29, ¥ = A. Then 7 = inf{t € [0,00): X; = a} P,P-as.
Therefore, we need to prove only condition (5.68), and this follows from the strong Markov
property of solutions of SDEs.

In a similar way, we consider the case, where a = A, 27 < v < 0.

5) Suppose that @« = —oo0, v = co. Then 7 = ( P,Is—a.s. Let us first assume that
s(—o0) > —oo or s(oco) < co. It follows from Propositions A.2 and A.3 that in this case

Similarly to the proof of (5.69), we establish that S < ¢ P, P-a.s. on the set {limye X} =
oo} and S < ¢ P,P-a.s. on the set {limyy¢ X; = —oo}. Hence, by (5.70), P L P. Since
Fe=F, we have ﬁg 1 Pe. Thus, S<( =71 P,ﬁ—a.s.

Let us now assume that s(—oo) = —oo and s(occ) = co. Then the measure P does
not explode. Consider the continuous (F, P)-local martingale

t
Y, =X, —/ b(X,)du, te€][0,00).
0

By the occupation times formula (see [33; Ch. VI, Cor. 1.6]),

[ am. = [,

o 0 o

b—b)?

:/ GO ) Le(X)de < 0 Poas.
R O

since P-a.s. the process (L7 (X))gzer is equal to zero outside a finite interval (let us recall

that in the case under consideration, (b — b)?/o* € L. .(R)). Hence, the continuous

(Fi, P)-local martingales

th—b
L= | —=(X,)dY,, te]0,)
0

o2

and
1

Z, = exp {Lt - §<L)t} ., te0,00)

are well defined with respect to the measure P (note that Z = £(L)). Since Z is a positive
(Fi, P)-local martingale, it converges P-a.s. as ¢ — oo to a finite random variable Z,.
Consider sequences (a,) and (c,) such that a1 < zy < ¢1, apy1 < an, a, | —00,
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dP
Cng1 > Cn, and ¢, T co. Then Zr, . — Z, P-as. By Lemma 5.30, Zr, . = dpz‘lin’%.

By the Jessen theorem (see [42; Th. 5.2.26]), Zw is the density of the absolutely continuous

part of the measure Q with respect to the measure Q, where Q and Q are the restrictions
of P and P to the o-field Vo Fr,, .. -
Due to Lemma 5.28,

o2

(L)oo = /0 O N du— o Poas

Consequently,
Doy = tli_rilo Z; = exp {tli—rilo L, — %(L)oo} =0 P-as.
Hence, QL Q, i.e. P L P. Since Fe=F, we have I5< L P Thus, S<(=r7 P,Is—a.s.
6) Suppose that « = A, v = oc. Consider the sets
D ={(=c, th:oo, lim X, = —oc},

t—o0

D, = {llth oo} D,—{tht }
By Proposition A.1,
P(DUD,UD_)=P(DUD,UD_)=1.

In the case under consideration, 7 = ¢ on D_ 7 =00 on the set D, 7 = ( on the set D, .
Since s(—00) > —o0o (—oc is a good point), we have P(D) = 0. Consequently, P_LPon
the set D, and therefore, S < oo P,P-a.s. on the set D. Similarly to the proof of (5.69),
we establish that S < ( P, P-a.s on the set D, . Thus, S <71 P, P-a.s.

In a similar way, we consider the case, where a = —oo, v = A.

7) Finally, suppose that &« =y = A. In this case 7 = § and the desired inequality
S < 7 is obvious. The proof is completed. O
Appendix

Here we describe the behaviour of solutions of SDEs. We use the notations F, F;, X,
and ( introduced in Subsection 5.2.

Let us consider SDE (5.1) and assume that conditions (5.2) and (5.3) are satisfied.
According to Proposition 5.6, this equation has a unique solution P in the sense of Defi-
nition 5.4. Consider the sets

D ={¢=oo0, lim X, = cx, tli)_riloXt:—oo},
B, ={ (=00, lim X, = oo},

Cy ={({< oo, I#?Xt 0o},

B = {C=0o. Jim Xi=-oc),

C_ = {(< oo, lim X, = —oc}.
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Define p, s, s(c0), s(—o0) by formulas (5.6)—(5.9).
The statements below follow from [4; Ch. 4].

Proposition A.1. Fither P(D) =1 or P(B,UB_UC,UC_) =1.

Proposition A.2. (i) If s(co) = oo, then P(By) = P(Cy) = 0.
(ii) If s(o0) < oo and (s(oc0) — s)/po? & Li (oc), then P(By) >0, P(Cy) = 0.

(iii) If s(o0) < 0o and (s(o0) — 5)/po? € Li.(00), then P(By) =0, P(Cy) > 0.

Clearly, Proposition A.2 has its analog for the behaviour at —oc.

For any a,c € R, set T, = inf{t € [0,00): X; = a} (here inf() = oo) and set
T,o=T,AT,.

Proposition A.3. (i) For any a € R, P(T, < o0) > 0.

(ii) Let a € (—o0,xq). Then T, < 0o P-a.s. <= s(00) = 0.

(iii) Let a € (zg,00). Then T, < 0o P-a.s. <= s(—o0) = —o0.

(iv) Let a € (—00, ), ¢ € (xg,00). Then T, < oo P-a.s. Moreover, P(T, < T.) > 0
and P(T, < T,) > 0.
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