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Abstract. This paper deals with various sufficient (as well as necessary and
sufficient) conditions for the uniform integrability of the exponential martingales
of the form

Zt = exp
{

Bt∧τ − 1

2
t ∧ τ

}
, t ≥ 0,

where B is a Brownian motion and τ is a stopping time. We give an overview
of the known results and present some new criteria (Theorems 3.2, 4.1).

As an auxiliary lemma, we prove the following statement that is interesting
in itself: for any function ϕ : R+ → R , the upper limit lim supt↑∞(Bt − ϕ(t))
either equals +∞ a.s. or equals −∞ a.s. This provides a simple criterion for
distinguishing lower and upper functions of a Brownian motion.

Key words and phrases. Exponential martingales, Novikov’s condition,
Kazamaki’s condition, consistent probability measures, upper and lower func-
tions of a Brownian motion.

1 Introduction and Known Results

1. Let B = (Bt)t≥0 be a Brownian motion on some filtered probability space(
Ω,F , (Ft)t≥0,P

)
and τ = τ(ω) be a (Ft)-stopping time taking values in [0,∞].

Set Mt = Bt∧τ . The process M = (Mt)t≥0 is a continuous square-integrable martin-
gale with the (predictable) quadratic variation 〈M〉 = (〈M〉t)t≥0 given by 〈M〉t = t∧τ .
The process Z = (Zt)t≥0 defined as

Zt = exp
{
Mt −

1

2
〈M〉t

}

is called the Doléans exponential (or the stochastic exponential) of M . These processes
arise naturally in many aspects of the stochastic analysis as well as in its applications

1



(stochastic optimal control, nonlinear filtering, stochastic mathematical finance, etc.).
The important problem is to find out whether the process Z is uniformly integrable.
The uniform integrability of Z is equivalent to the condition EZ∞ = 1, or in other
words,

E exp
{
Bτ −

1

2
τ
}

= 1. (1.1)

Here, the expression exp{Bτ − τ/2} is taken to be equal to zero on the set {ω : τ(ω) =
∞}. This convention is natural in view of the limit relation

lim
t→∞

exp
{
Bt −

1

2
t
}

= lim
t→∞

exp
{
t
(Bt

t
− 1

2

)}
= 0 a.s.

which follows from the strong law of large numbers for a Brownian motion:
limt→∞Bt/t = 0 a.s.

2. There are many papers dealing with the sufficient conditions that should be
imposed on τ in order to guarantee (1.1).

For a uniformly bounded τ (i.e. τ(ω) ≤ c), property (1.1) is a consequence of
Doob’s optional stopping theorem (see, for example, [13; Ch. II, (3.2)]). I.I. Gikhman
and A.V. Skorokhod [3] proved that the condition

∃ε > 0 : E exp{(1 + ε)τ} <∞

guarantees (1.1). R.S. Liptser and A.N. Shiryaev [10] showed that a weaker assumption

∃ε > 0 : E exp
{(1

2
+ ε

)
τ
}
<∞

is sufficient for (1.1). A.A. Novikov [11] proved that one can set ε = 0 in the above
condition, i.e. that the assumption

E exp
{1

2
τ
}
<∞ (1.2)

implies (1.1) while no condition of the form

E exp
{(1

2
− ε

)
τ
}
<∞ (1.3)

with ε > 0 is sufficient for (1.1).
Let us now consider the following example:

τ = inf{t ≥ 0 : Bt = 1}. (1.4)

We have E
√
τ = ∞, and consequently, E exp{τ/2} = ∞. On the other hand, it is well

known (see, for example, [16; p. 248]) that (1.1) holds for this stopping time τ . Thus,
condition (1.2) is not necessary for (1.1).

It is of interest to mention in this connection Kazamaki’s condition (see [7]):

sup
t≥0

E exp
{1

2
Bt∧τ

}
<∞. (1.5)
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This condition is sufficient for (1.1) and is weaker than (1.2) in view of the inequality

E exp
{1

2
Bt∧τ

}
= E exp

{1

2
Bt∧τ −

1

4
t ∧ τ

}
exp

{1

4
t ∧ τ

}

≤
(
E exp

{
Bt∧τ −

1

2
t ∧ τ

})1/2(
E exp

{1

2
t ∧ τ

})1/2

=
(
E exp

{1

2
t ∧ τ

})1/2

≤
(
E exp

{1

2
τ
})1/2

.

Note that (1.5) holds for the stopping time given by (1.4) while (1.2) is violated for
this stopping time. In other words, Kazamaki’s condition (1.5) is strictly weaker than
Novikov’s condition (1.2).

As already pointed out, condition (1.3) is insufficient for (1.1). It is interesting to
note, however, that any of the conditions

lim
ε↓0

(
E exp

{1 − ε

2
τ
})ε

= 1,

lim
ε↓0

(
sup
t≥0

E exp
{1 − ε

2
Bt∧τ

})ε

= 1

implies (1.1) (see [9; p. 160], [18; Théorème 1]).
Condition (1.2) can also be weakened by another way. If there exists a lower

function ϕ of a Brownian motion (the definition of a lower function is given in Section 2)
such that

E exp
{1

2
τ − ϕ(τ)

}
<∞ (1.6)

(here, τ is supposed to be a.s. finite), then (1.1) is satisfied. This was proved in [12]
and [9; p. 159] with some additional monotonicity assumptions made on the lower
function ϕ.

Let us also mention the paper [8] that deals with the conditions similar to (1.6) as
well as with the weakening of Kazamaki’s condition.

3. One of the aims of this paper is to give some new sufficient conditions for (1.1)
involving the lower functions (see Section 4).

In Section 2 we prove a lemma related to the lower functions. This lemma is used
in the subsequent proofs. Besides, it is in itself noteworthy.

In Section 3 we present a simple proof of a necessary and sufficient condition
for (1.1). This condition has a particularly simple formulation for the stopping times
of the form τ = inf{t ≥ 0 : Bt ≥ f(t)}, where f : R+ → R is a continuous function.

Section 5 contains several (counter-)examples.
In Section 6 we show that, for any continuous local martingale M , the problem of

the uniform integrability of its stochastic exponential can be reduced to (1.1).

2 Upper and Lower Functions of Brownian Motion

Let (Bt)t≥0 be a standard linear Brownian motion started at zero and let ϕ : R+ → R

be a continuous function. The set

A =
{
ω : ∃t = t(ω) > 0 : ∀s ≥ t, Bs(ω) < ϕ(s)

}
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belongs to the tail σ -field X =
⋂

t>0 σ(Bs; s ≥ t). The σ -field X is trivial (this
follows from Blumenthal’s zero-one law combined with the time-inversion property of a
Brownian motion). Hence, P(A) equals 0 or 1. We will now cite the classical definition
of the lower and upper functions (see, for example, [5; §1.8]).

Definition 2.1. If P(A) = 0, then ϕ is called a lower function of a Brownian
motion. If P(A) = 1, then ϕ is called an upper function of a Brownian motion.

Remark. It can be proved that, for any function ϕ : R+ → R, the set A is
measurable and belongs to the σ -field X . Thus, any function ϕ : R+ → R is either a
lower function or an upper function of a Brownian motion. 2

Lemma 2.2. For any (continuous) function ϕ : R+ → R, one has

lim sup
t→∞

(Bt − ϕ(t))
a.s.
=

{
+∞ if ϕ is a lower function,

−∞ if ϕ is an upper function.

Proof. The random variable lim supt→∞(Bt − ϕ(t)) is measurable with respect to
the tail σ -field X . As X is trivial, there exists a constant α ∈ [−∞,∞] such that

lim sup
t→∞

(Bt − ϕ(t)) = α a.s.

Suppose that α ∈ (−∞,∞). Set

Q = Law(Bt; t ≥ 0), Q̃ = Law(Bt + t ∧ 1; t ≥ 0).

Let X denote the coordinate process on C(R+,R) (i.e. Xt : C(R+,R) 3 x 7→ x(t)).
Then

lim sup
t→∞

(Xt − ϕ(t)) = α Q-a.s.

lim sup
t→∞

(Xt − ϕ(t)) = α + 1 Q̃-a.s.

On the other hand, the general theory of the change of measure (see [6; Ch. IV, (4.23)])

guarantees that Q̃ ∼ Q. Consequently, α = α + 1. The obtained contradiction shows
that α equals either +∞ or −∞. Obviously, in the former case ϕ is a lower function
while in the latter case ϕ is an upper function. 2

Remark. Sometimes one defines “lower” and “upper” (strictly positive) functions of
a Brownian motion using the expression

lim sup
t→∞

Bt

ϕ(t)

(note that this random variable is a.s. equal to a constant α ∈ [0,∞]). However, this
approach does not allow the lower functions and the upper functions to be distinguished
completely for the following reason. If α > 1, then ϕ is a lower function (in the sense of
Definition 2.1); if α < 1, then ϕ is an upper function. But there exist lower functions
as well as upper functions ϕ for which α = 1.
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In order to prove the last assertion, take ϕ(t) =
√

2t ln ln t . The Kolmogorov-
Petrovsky criterion (see [5; §1.8]) shows that ϕ(t) is a lower function. For any ε > 0,
the function (1+ε)ϕ(t) is an upper function. Thus, there exists an increasing sequence
(tn)∞n=1 of real numbers such that, for any n ∈ N,

P

{
∀s ≥ tn, Bs <

(
1 +

1

n

)
ϕ(s)

}
≥ 1 − 1

2n
.

Thanks to the Borel-Cantelli lemma, the function

ψ(t) =
(
1 +

1

n

)
ϕ(t) if t ∈ [tn, tn+1)

is an upper function. Furthermore, by the law of the iterated logarithm, we have

lim sup
t→∞

Bt

ϕ(t)
= lim sup

t→∞

Bt

ψ(t)
= 1 a.s.

Obviously, one can construct a continuous upper function ψ with the same property. 2

3 Criteria for the Uniform Integrability

of Exponential Martingales

When considering the sufficient conditions for (1.1), it is useful to introduce the fol-
lowing classes of stopping times:

(A) M
A is the class of all (Ft)-stopping times;

(B) M
B is the class of (FB

t )-stopping times, where FB
t =

⋂
ε>0 σ(Bs; s ≤ t + ε);

(C) M
C is the class of the stopping times that have the form τ = inf{t ≥ 0 : Bt ≥

f(t)} for some continuous function f : R+ → R with f(0) > 0.

1. Let (Bt)t≥0 be a Brownian motion on
(
Ω,F , (Ft)t≥0,P

)
and τ be a (Ft)-

stopping time, i.e. τ ∈ M
A . Let us consider the space C(R+,R

2) of continuous
functions x = (x1(t), x2(t))t≥0 . This space is endowed with the Borel σ -field C(2) . Let
X = (X1

t , X
2
t )t≥0 denote the coordinate process on C(R+,R

2) (i.e. X1
t (x) = x1(t),

X2
t (x) = x2(t)) and C(2)

t =
⋂

ε>0 σ(Xs; s ≤ t+ ε) denote the canonical filtration. Set

Q = Law
(
Bt, (t− τ)+; t ≥ 0

)
(3.1)

(thus, Q is a measure on C(2) ). Obviously, (1.1) is equivalent to:

EQ exp
{
X1

T − 1

2
T

}
= 1, (3.2)

where
T = inf{t ≥ 0 : X2

t > 0}. (3.3)

Set Qt = Q|C(2)
t and consider the measures (Q̃t)t≥0 defined by

dQ̃t

dQt

= exp
{
X1

t − 1

2
t
}
. (3.4)

Then the measures (Q̃t) are consistent in the sense that Q̃t|C(2)
s = Q̃s for s ≤ t.
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Proposition 3.1. Let d ∈ N and (Pt)t≥0 be a family of consistent probability mea-

sures on
(
C(d)

t

)
, where

(
C(d)

t

)
is the canonical filtration on the space C(R+,R

d). Then

there exists a unique measure P on the Borel σ -field C (d) such that P|C(d)
t = Pt for any

t ≥ 0.

For the proof, see [17; (1.3.5)].

Remark. Suppose that Ω is an arbitrary probability space endowed with a filtration
(Gt)t≥0 and (Pt)t≥0 is a family of consistent probability measures on (Gt). Then it may
happen that the family (Pt) can not be extended to a measure P on

∨
t≥0 Gt (see [2],

[14; Ch. II, §3] for the corresponding examples). 2

The following theorem provides a necessary and sufficient condition for (3.2) (and
hence, for (1.1)).

Theorem 3.2. Suppose that τ ∈ M
A . Let Q̃ be the measure such that Q̃|C(2)

t = Q̃t ,

where Q̃t is given by (3.4). Then (3.2) is satisfied if and only if Q̃{T <∞} = 1.

Proof. Set QT = Q|C(2)
T , Q̃T = Q̃|C(2)

T . By [6; Ch. III, (3.4)], we have

dQ̃T

dQT
= exp

{
X1

T − 1

2
T

}

on the set {T <∞}. Therefore,

Q̃{T <∞} = EQ

[
I(T <∞) exp

{
X1

T − 1

2
T

}]
= EQ exp

{
X1

T − 1

2
T

}
(3.5)

(we used the fact that exp{X1
T − T/2} is taken to be equal to zero on the set {T =

∞}). 2

2. Let us now consider the case where τ is a (FB
t )-stopping time, i.e. τ ∈ M

B .
Here, FB

t =
⋂

ε>0 σ(Bs; s ≤ t + ε). Then there exists a map T : C(R+,R) → R

such that τ = T (B) and T is a (Ct)-stopping time (here, (Ct) denotes the canonical
filtration on C(R+,R)).

Theorem 3.3. Suppose that τ ∈ M
B . Let Q̃ be the distribution of a Brownian

motion with the unit drift, i.e. Q̃ = Law(Bt + t; t ≥ 0). Then (1.1) is satisfied if and

only if Q̃{T <∞} = 1.

Proof. Condition (1.1) is equivalent to the property

EQ exp
{
XT − 1

2
T

}
= 1,

where X is the coordinate process on C(R+,R) and Q is the Wiener measure. By
Girsanov’s theorem combined with [6; Ch. III, (3.4)], we have

dQ̃T

dQT

= exp
{
XT − 1

2
T

}

on the set {T <∞}. The equality similar to (3.5) completes the proof. 2

3. Let us now suppose that τ = inf{t ≥ 0 : Bt ≥ f(t)}, where f : R+ → R is a
continuous function with f(0) > 0, i.e. τ ∈ M

C . The following result was obtained
in [15]. We give here another proof.
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Theorem 3.4. Suppose that τ ∈ M
C . Then condition (1.1) is satisfied if and only

if the function f(t) − t is a lower function of a Brownian motion.

Proof. Let Q and Q̃ be the same as in Theorem 3.3. Set

T = inf{t ≥ 0 : Xt ≥ f(t)},

where X is the coordinate process on C(R+,R). By Theorem 3.3, condition (1.1) is

equivalent to the equality Q̃{T < ∞} = 1. This equality is, in turn, equivalent to

Q{T̃ <∞} = 1, where

T̃ = inf{t ≥ 0 : Xt ≥ f(t) − t}.
If f(t) − t is a lower function, then, obviously, Q{T̃ <∞} = 1.
Suppose now that f(t)− t is an upper function. Then there exists t0 ≥ 0 such that

Q{∀s ≥ t0, Xs < f(s) − s} > 0.

Consequently, there exists a ∈ R such that

Q{∀s ≥ t0, a+Xs −Xt0 < f(s) − s} > 0. (3.6)

Obviously, we have

Q
(
{∀s ≤ t0, Xs < f(s) − s} ∩ {Xt0 < a}

)
> 0. (3.7)

Combining (3.6) and (3.7), we get

Q{∀s ≥ 0, Xs < f(s) − s} > 0.

This means that Q{T̃ <∞} < 1. 2

Remark. Take τ = inf{t ≥ 0 : Bt ≥ 1 + t}. By Theorem 3.4, (1.1) is then
satisfied. On the other hand, τ is infinite with positive P-probability. Thus, the
integral conditions like (1.2) are far from being necessary for (1.1). 2

Let us now consider the following example related to Theorem 3.4.

Example 3.5. Let a ∈ (0,∞), b ∈ (−∞,∞) and

τa,b = inf{t ≥ 0 : Bt ≥ a+ bt}.

It is well known (see [1; (4.32)] or [16; p. 759]) that

P{τa,b ≤ t} = 1 − Φ
(a+ bt√

t

)
+ e−2abΦ

(bt− a√
t

)
.

Hence, the density

pa,b(t) =
∂P{τa,b ≤ t}

∂t

is given by

pa,b(t) =
a√
2πt3

exp
{
−(a+ bt)2

2t

}
. (3.8)
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Therefore,

E exp
{
Bτa,b

− 1

2
τa,b

}
= E exp

{
a + bτa,b −

1

2
τa,b

}
I(τa,b <∞)

=
aea(1−b)

√
2π

∫ ∞

0

1

t3/2
exp

{
bt− 1

2
t− a2

2t
− b2t

2

}
dt

= exp
{
a(1 − b) − a|b− 1|

}
=

{
1 if b ≤ 1,

e−2a(b−1) if b > 1.

In order to calculate the integral, we used the change of variables u = t−1/2 and the
equality ∫ ∞

0

exp
{
−αu2 − β

u2

}
du =

1

2

√
π

α
e−2

√
αβ, α > 0, β ≥ 0

(see [4; (3.325)]). Thus,

E exp
{
Bτa,b

− 1

2
τa,b

}
= 1 if b ≤ 1

and

E exp
{
Bτa,b

− 1

2
τa,b

}
< 1 if b > 1.

Moreover,

P{τa,b <∞} =

∫ ∞

0

pa,b(t) dt =

{
1 if b ≤ 0,

e−2ab if b > 0.

It is reasonable to ask the question: for which functions ψ is (1.1) satisfied with
the following stopping time

τ = inf
{
t ≥ 0 : Bt ≥ a + t+ ψ(t)

}
.

Theorem 3.4 shows that (1.1) is satisfied with such τ if and only if ψ is a lower function
of a Brownian motion. 2

4 Some New Conditions for the Uniform

Integrability

The following new criteria improve the results of [8] as well as some conditions of [9]
and [12]. In particular, our results improve Novikov’s criterion (1.2) and Kazamaki’s
criterion (1.5).

Theorem 4.1. Let ϕ be a lower function of a Brownian motion. Then any of the

conditions

lim sup
t→∞

E exp
{1

2
t ∧ τ − ϕ(t ∧ τ)

}
<∞, (4.1)

lim sup
t→∞

E exp
{1

2
Bt∧τ −

1

2
ϕ(t ∧ τ)

}
<∞ (4.2)

is sufficient for (1.1).
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Proof. We will give the proof only for condition (4.2) as (4.1) is treated similarly

(see also [8]). Let Q, Q̃ and T be the same as in (3.1), (3.3), (3.4). For any t ≥ 0, we
have

EQ exp
{1

2
X1

t∧T − 1

2
ϕ(t ∧ T )

}

= E
Q̃

exp
{1

2
X1

t∧T − 1

2
ϕ(t ∧ T )

}
exp

{
−X1

t∧T +
1

2
t ∧ T

}

= E
Q̃

exp
{
−1

2

(
X1

t∧T − t ∧ T
)
− 1

2
ϕ(t ∧ T )

}

≥ E
Q̃

exp
{1

2
(−X1

t + t) − 1

2
ϕ(t)

}
I(T = ∞).

Note that, by Girsanov’s theorem, the process −Xt + t is a Q̃-Brownian motion.
Suppose that (4.2) holds. Then, according to Lemma 4.2 below, Q̃{T = ∞} = 0.
Applying Theorem 3.2, we get the desired result. 2

Lemma 4.2. Let B be a Brownian motion on some probability space (Ω,F ,P).
Suppose that ϕ is a lower function of a Brownian motion. Let A ∈ F be a set with

P(A) > 0. Then

lim sup
t→∞

E exp
{1

2
Bt −

1

2
ϕ(t)

}
I(A) = ∞. (4.3)

Proof. Step 1. Let us first prove that there exists a sequence (tn)∞n=1 such that
n ≤ tn < n+ 1 and

lim sup
n→∞

(
Btn − ϕ(tn)

)
= ∞ a.s. (4.4)

To this end, we choose for each n ∈ N a number tn ∈ [n, n + 1) such that

ϕ(tn) ≤ inf
t∈[n,n+1)

ϕ(t) + 1

(we may assume that this infimum is finite for all sufficiently large n, or else the
statement of Step 1 is trivial). Let us prove that (4.4) is satisfied for these numbers
tn .

Set
Sn = sup

t∈[0,1]

|Bn+t − Bn|.

Then ES4
n <∞, and, by Chebyshev’s inequality,

∞∑

n=1

P{Sn > n1/3} <∞.

According to the Borel-Cantelli lemma,

P
{
∃N : ∀n ≥ N, Sn ≤ n1/3

}
= 1. (4.5)

For any t ∈ [n, n + 1), we can write

Bt − ϕ(t) ≤ Btn − ϕ(tn) + 2Sn + 1.
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Combining this with (4.5) and keeping inequality tn ≥ n in mind, we get

lim sup
t→∞

(Bt − ϕ(t)) ≤ lim sup
n→∞

(
Btn − ϕ(tn) + 3t1/3

n

)
a.s.

Applying Lemma 2.2, we arrive at

lim sup
n→∞

(
Btn − ϕ(tn) + 3t1/3

n

)
= ∞ a.s. (4.6)

On the other hand, there exists an absolutely continuous function h : R+ → R+

such that h(0) = 0, h(t) = 3t1/3 for t > 1 and
∫ ∞

0

(h′(t))2dt <∞.

For this function h, we have

Law(Bt; t ≥ 0) ∼ Law
(
Bt + h(t); t ≥ 0

)

(see [6; Ch. IV, (4.23)]). This, together with (4.6), yields (4.4).

Step 2. Suppose that condition (4.3) is violated. Then there exists γ > 0 such
that, for any sufficiently large n,

E exp
{1

2
Btn − 1

2
ϕ(tn)

}
≤ γ,

where the numbers tn satisfy (4.4). Hence,

P
({
Btn − ϕ(tn) > 3t1/3

n

}
∩ A

)
≤ γ exp

{
−3

2
t1/3
n

}
≤ γ

n2
.

By the Borel-Cantelli lemma,

lim sup
n→∞

(
Btn(ω) − ϕ(tn) − 3t1/3

n

)
≤ 0

for P-almost every ω ∈ A. Recall that P(A) > 0.
Let h be the function described in Step 1. Then

Law(Bt; t ≥ 0) ∼ Law
(
Bt − h(t); t ≥ 0

)
,

and condition (4.4) shows that

lim sup
n→∞

(
Btn − ϕ(tn) − 3t1/3

n

)
= ∞ a.s.

The obtained contradiction completes the proof. 2

Theorem 4.1 implies the following statement (it was proved in [9; p. 159]).

Corollary 4.3. Suppose that ϕ is a lower function such that the function t/2−ϕ(t)
is increasing. Then the condition

E exp
{1

2
τ − ϕ(τ)

}
<∞ (4.7)

is sufficient for (1.1).
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5 Some Examples

1. The first example shows that condition (1.6) is strictly weaker than Novikov’s
condition (1.2).

Example 5.1. Let Ω be the space C(R+,R) equipped with the Wiener measure
Q. Set

τ = inf
{
t ≥ 0 : Xt ≥ 1 +

√
t− t

}
,

where X is the canonical process on C(R+,R). Let Q̃ = Law(Bt + t; t ≥ 0) and

τ̃ = inf
{
t ≥ 0 : Xt ≥ 1 +

√
t
}
, σ = inf{t ≥ 0 : Xt ≥ 1}.

Then

EQ exp
{1

2
τ
}

= E
Q̃

exp
{1

2
τ̃
}

= E
Q̃

exp
{1

2
τ̃
}
I(τ̃ <∞)

= EQ exp
{1

2
τ̃
}

exp
{
Xτ̃ −

1

2
τ̃
}
I(τ̃ <∞) = EQ exp{Xτ̃}

= EQ exp
{
1 +

√
τ̃
}
≥ EQ exp

{
1 +

√
σ
}

= ∞

(we used (3.8) in the last equality). Thus, condition (1.2) is violated.
On the other hand, the computations similar to those given above show that

EQ exp
{1

2
τ −

√
τ
}

= EQ exp
{
Xτ̃ −

√
τ̃
}

= e <∞. 2

2. The second example shows that condition (4.2) is strictly weaker than Kaza-
maki’s condition (1.5).

Example 5.2. Set
τ = inf

{
t ≥ 0 : Bt ≥ 1 +

√
t
}
.

Consider also the stopping time

σ = inf{t ≥ 0 : Bt ≥ 1}.

We have

E exp
{1

2
Bt∧τ

}
≥ E exp

{1

2
(1 +

√
τ )

}
I(τ ≤ t) ≥ E exp

{1

2
(1 +

√
σ)

}
I(τ ≤ t).

Since τ is finite a.s., the last term converges (as t→ ∞) to

E exp
{1

2
(1 +

√
σ)

}
= ∞.

Thus, condition (1.6) is violated.
On the other hand,

E exp
{1

2
Bt∧τ −

1

2

√
t ∧ τ

}
≤ e1/2 <∞. 2
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3. The third example shows that the possible weakening of conditions (1.5), (4.2)
to the condition

E exp
{1

2
Bτ

}
<∞ (5.1)

(together with the assumption τ <∞ a.s.) does not guarantee (1.1).

Example 5.3. Set
τ = inf{t ≥ 1 : Bt = 1}.

Here, (5.1) is trivially satisfied. On the other hand, (1.1) is violated. Indeed, let us
consider the stopping time

σ = inf{t ≥ 0 : Bt = 1}.

Applying Kazamaki’s criterion, we deduce that (1.1) holds for σ . Furthermore, Bτ =
Bσ = 1 while τ ≥ σ and P{τ > σ} > 0. Therefore,

E exp
{
Bτ −

1

2
τ
}
< E exp

{
Bσ − 1

2
σ
}

= 1. 2

4. The fourth example shows that the monotonicity assumption in Corollary 4.3 is
essential.

Example 5.4. Consider the stopping time

τ0 = inf{t ≥ 0 : Bt = −1}.

Let τ = n + 1 on the set {n ≤ τ0 < n + 1} and let τ = ∞ on the set {τ0 = ∞}. In
view of Theorem 3.3, condition (1.1) is violated.

On the other hand, condition (4.7) is satisfied with the (discontinuous) lower func-
tion

ϕ(t) =

{
0 if t /∈ N,

t/2 if t ∈ N.

Obviously, one can also construct a continuous lower function ϕ for which (4.7) is
true. 2

6 Stochastic Exponentials of Continuous Local Mar-

tingales

Let M = (Mt)t≥0 be a continuous local martingale on
(
Ω,F , (Ft)t≥0,P

)
with the

quadratic variation 〈M〉 = (〈M〉t)t≥0 . Let us formulate a version of the Dambis-
Dubins-Schwarz theorem (see [13; Ch. V,(1.6), (1.7)]).

Proposition 6.1. There exist an enlargement (Ω̃, F̃ , P̃) of (Ω,F ,P), a filtration

(F̃t)t≥0 on this space and a (F̃t)-Brownian motion B = (Bt)t≥0 such that Mt = B〈M〉t .

Moreover, for each s ≥ 0, the random variable 〈M〉s is a (F̃t)-stopping time.

12



Let us consider the stochastic exponential of M :

Zt = exp
{
Mt −

1

2
〈M〉t

}
.

By Itô’s formula, Z is a (Ft)-local martingale. Being positive, it is a supermartingale
(this is a consequence of Fatou’s lemma). By Doob’s convergence theorem, there exists
(a.s.) the limit Z∞ = limt→∞ Zt .

Let 〈M〉∞ = limt→∞〈M〉t . On the set {〈M〉∞ < ∞}, there exists (a.s.) the limit
M∞ = limt→∞Mt (this is a consequence of Proposition 6.1). Obviously, on this set we
have

Z∞ = exp
{
M∞ − 1

2
〈M〉∞

}
a.s.

Proposition 6.1, combined with the property limt→∞ exp{Bt − t/2} = 0 a.s., shows
that Z∞ = 0 on the set {〈M〉∞ = ∞}.

Let now B be the Brownian motion given by Proposition 6.1. Set τ = 〈M〉∞ .

Note that τ(= limn→∞〈M〉n) is a (F̃t)-stopping time. In view of the convention
exp{Bτ − τ/2} = 0 on the set {τ = ∞}, we have

Z∞ = exp
{
Bτ −

1

2
τ
}

a.s. (6.1)

As Z is a positive supermartingale, the uniform integrability of Z is equivalent to
the condition EZ∞ = 1. Thanks to (6.1), this is, in turn, equivalent to (1.1).
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