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Abstract. This paper deals with some problems related to the relative entropy
minimization under linear constraints. We discuss the relation between this problem
and statistical physics, information theory and financial mathematics. Furthermore, in
financial mathematics we provide the explicit form of the minimal entropy martingale
measure in the general discrete-time asset price model. We also give the explicit solution
of the problem of the exponential utility maximization in the general discrete-time asset
price model.
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1 Introduction

1. Probability theory: the minimum and the critical points of the relative en-
tropy. Let (€, F,P) be a measurable space with a o-finite measure P. Let X : Q@ — R¢ be
a measurable function. We will consider the problem of minimizing the relative entropy (also
known as the Kullback-Leibler information)

dQ ) dQ
/anEdQ if /Q‘lnﬁ‘dQ<oo,

H(Q,P) = (1.1)

dQ
if ‘1 —‘d -
+oo i /QndP Q=oc
over the set

&= {Q : Q is a probability measure on (2, F),
(1.2)

Q< P. / 1X[dQ < oo, / XdQ = 0}.
Q Q
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This problem (and even more general problem, where we have infinitely many constraints of
the form [, X'dQ = 0) is well known in probability theory; see Bucklew [1; p. 30], Cover
and Thomas [2; Ch. 11], Csiszar [3], Follmer and Schied [6; §3.2], Frittelli [7]. Theorem 2.2
that we prove below can be derived from [3; Theorem 3.1] in the case, where P is a finite
measure. However, we prefer to give a direct proof for two reasons: first, the case, where
P(£2) = oo, does not follow directly from [3] (we need to consider this case for the applications
in statistical physics and information theory); second, the proof in [3] does not employ the
method of Lagrange multipliers, while we prefer to use this method in order to stress the
relationship between the problem under consideration and finding the stable state of a system
in statistical physics.

The measure, at which the functional Q — H(Q,P) attains its minimum, is its critical
point. It is also interesting to find other critical points. In Theorem 2.6 we describe all the
critical points of this functional on the set £.

The problem of the relative entropy minimization under linear constraints arises in various
disciplines:

e theory of large deviations,

e statistics,

e statistical physics,

e information theory,

e financial mathematics.

In the theory of large deviations this problem arises in the Sanov theorem and the conditional
limit theorem (see Cover and Thomas [2; Ch. 12]). In statistics it arises in the proof of Stein’s
lemma and in the proof of Chernoff’s theorem (see Cover and Thomas [2; Ch. 12]). The
relationship with the other three disciplines is described below.

2. Statistical physics: stable and metastable states. In statistical physics the
problem of the relative entropy minimization under linear constraints corresponds to maxi-
mizing the (Boltzmann) entropy of a system under the fixed interior energy (the entropy in
physics is taken with the opposite sign as compared to the relative entropy in probability
theory), i.e. determining the stable state of a system; see Landau and Lifshits [11] (also see
Jaynes [10]). In Section 3, we translate the results of Section 2 into the physical language
and thus obtain formulas for the Gibbs state, the free energy, the interior energy, and the
entropy of a system in a stable state as well as basic thermodynamic relations between these
quantities (see Theorem 3.1).

The problem of finding the critical points of the functional Q — H(Q,P) over £ means
determining the metastable states of a system; see Maslov [12].

3. Information theory: data compression. In information theory the problem of the
relative entropy minimization under linear constraints corresponds to maximizing the amount
of information contained in a coding under the fixed average cost of the coding. This problem
was considered by Stratonovich [17] under the name “first variational problem”. Its solution
shows, in particular, that the maximal amount of information, which can be contained in
the words of the D-ary alphabet with the average length L. is approximately LInD for
the large L. This result is often derived from completely different considerations (McMillan
inequality); see Cover and Thomas [2; Ch. 5]. The interpretation in information theory of
the problem being considered is described in Section 4.

4. Financial mathematics: minimal entropy martingale measure. In financial
mathematics the problem of the relative entropy minimization under linear constraints corre-
sponds to finding the minimal entropy martingale measure in the one-period asset price model.



In the case, where the random variables describing the asset prices have exponential moments,
the solution is well known (see, for instance, Follmer and Schied [6; Corollary 3.27]). Namely,
the minimal entropy martingale measure is the Esscher transform of the original probability
measure P.

In the multiperiod discrete-time models and the continuous-time models the form of the
minimal entropy martingale measure is known in some particular cases; see Fujiwara and
Miyahara [8], Miyahara and Novikov [13]. In Section 5, we give the explicit form of the
minimal entropy martingale measure in the general discrete-time model satisfying natural
integrability conditions (see Theorem 5.6).

The problem of finding the minimal entropy martingale measure is dual to the problem
of the exponential utility maximization as pointed out in many papers; see Delbaen et al. [4],
Frittelli [7], Goll and Riischendorf [9], Schachermayer [15]. We also provide in Section 5 an
explicit solution of the exponential utility maximization problem in the general discrete-time
model satisfying natural integrability conditions (see Theorem 5.10). Then the duality of the
two problems becomes obvious from their solutions.

2 Probability Theory: The Minimum and the Critical Points
of the Relative Entropy

1. Relative entropy minimization under linear constraints. Let (2,F,P) be a

measurable space with a o-finite measure P. Let X : Q@ — R? be a measurable function.

Let us find the minimal value of the functional Q — H(Q,P) defined in (1.1) over the set &

defined in (1.2). We will apply the method of Lagrange multipliers and first find the minimum

of the expression [(7, X)dQ + H(Q,P) over all the probability measures Q < P (by (-,-)
we denote the scalar product in R?).

Lemma 2.1. Let Z : Q@ — R be a random wvariable. Suppose that fQ e?dP < oo and
Jo|Z|e?dP < co. Then the minimum of the expression — [, ZdQ+ H(Q,P) over the proba-
bility measures Q < P with fQ |Z]|dQ < oo is attained at the unique measure

Q. = const e?P.

Proof. For any measure Q with the described properties, we have

H(Q,Q*):/ n e Q Q= /qln ge Z/QeZdP>dP
—/quP+/qlnqu+ln/ e? dP
Q Q Q

= —/ ZdQ+H(Q,P)+ln/ e dP,
Q

Q

where ¢ = d . This yields the desired statement. O

Set S = supp(P o X~ !). Let L denote the smallest affine subspace of R¢ containing .

By S we denote the relative interior of S, i.e. the interior of S in the relative topology of L.

If 0 €S, then € # 0 (see Shiryaev [16; Ch. V, §2¢]).
Consider the function

o(1) = ln/ e<T’X>dP, T e RY,
Q

which takes on values in (—oo,o0]. It follows from the Jensen inequality that ¢ is convex.



We will also consider the function

_ foXelmX)ap

P(7) W (2.1)

defined on the set

{T e R : / | XX dP < oo, / X P < oo}
Q Q

Note that, for 7 from the interior of the set {7 € R? : () < 0o}, we have (1) = grad ¢(7).

Theorem 2.2. Suppose that 0 € §
(i) We have
inf{H(Q,P): Q € &} = —inf{p(r) : 7 € R?}.
(ii) If there exists 7. € RY such that ¢(.) = inf{e(7) : 7 € R4} and (1) = 0, then the

minimum of H(Q,P) over & is attained at the unique measure

Q. = const e{™X) P,

Otherwise, the minimum of H(Q,P) over £ is not attained.

Remark. We have ¢(7) = ¢(pry, 7), ¥(7) = ¢(pry, 7), where pr; denotes the orthogonal

projection on L (the condition 0 € § guarantees that L is not only an affine subspace, but
is also a linear subspace). The function ¢ is strictly convex on L. Hence, the set of points
7, satisfying the conditions ¢(7.) = inf{p(7) : 7 € R?} and 1(7,) = 0 is either empty or has
the form 7 + L+, where L™ is the orthogonal complement to L. Thus, 7, is not determined
uniquely, while Q, is nevertheless unique. O

Proof. (i) Let us first prove that
inf{H(Q,P): Q€ &} < —inf{p(r) : 7 € R?}. (2.2)

Consider sets A, € F such that 4, C 4,41, 0 < P(4,) < oo, and |JA, = Q. Define
B, = A, n{|IX|| <n}, P, =P(-NB,), and

on(T) = ln/Q e Xdp,, T e R (2.3)

We have ¢, < p,+1, and the functions ¢, tend to ¢ pointwise. Furthermore, ¢(7) =
o(pry, 7)s pn(T) = @n(pry, 7), the function ¢ is strictly convex on L, and ¢(7) — oo on L
as ||7|| — oco. Consequently, for any sufficiently large n, there exists a point 7, € R?, at

which ¢, attains its minimum. For the measure Q; = const e X)P,. . we have

XelmX0dp,
/QXdeZ = f? ap. grad ¢, (7,y) = 0.
(9] n

Hence, Q;, € £. Moreover,

dQ* dQ*
H(Q)P) = [ ;= [ miEtaq;
( ) Q dP o dPn

_ / (7%, X)dQ, —In / X gp,
Q Q

= —pn(1) m —inf{p(r) : 7 € Rd}.




This proves (2.2).
Let us now prove that

inf{H(Q,P): Q€ &} > —inf{p(r) : 7 € R?}. (2.4)
Assume that this is not true, i.e. there exists a measure Qy € £ and a point 79 € R? such
that H(Qo,P) < —p(7m9). Consider sets A, € F such that A, C A,4+1, 0 < P(4,) < oo,

and |JA, = Q. Take B, = A, N{||X|| < n}, P, =P(-NB,), Qu =Qo(-| By) and define
©n by (2.3). Since

/ XdQ, —— Xng =0,
Q n—00
H(Qnapn) m H(QO,P),

on(70) —— ¢(70),
Nn—00

there exists n such that

_/Q<T°’X>dQ" + H(Qn, Prn) < —¢n(10).

On the other hand, it follows from Lemma 2.1 that

- / (70, X)dQn + H (Qu, Py)
Q

o _Jalro, X)elmX / el em’X) ~dP
— JpelrXdpy e ap, " Ty e !

:—ln/ (0. X0 aP,, = —n(10).
Q

The obtained contradiction shows that (2.4) is true.

(ii) The first statement is a straightforward consequence of Lemma 2.1.

Suppose now that there exists no point 7, € R? such that ¢(7.) = inf{p(7) : 7 € R} and
(1) = 0. Assume that there exists a measure Qo € £, at which the minimum of H(Q,P)
over & is attained. Denote <%0 5> by qo. Let us first prove that there exist o € R? and ¢y € R
such that Ingy = (79, X) + co P-a.e. on {go > 0}. If this is not true, then there exists a
set B € F such that 0 < P(B) < oo, X is bounded on B, Ingq is bounded on B, and the
restriction Inqo|p does not belong to the space £ = {(1,X)|p +c:7 € R c € R}. Let p
denote the L?(B, F|g,P|s)-projection of Ingy|p onto £. Then the function r = Ingg|p — p
is measurable, bounded, and it satisfies

/ |r|dP < oo, / rdP =0, / || X dP < oo, / rXdP = 0. (2.5)
B B B B

Since Ingqp is bounded on B, the measure Qg + erP is a probability measure for ¢ from a
sufficiently small neighborhood of zero. It follows from (2.5) that Qp+erP € £. Furthermore,

d

de

H(Qo+erP,P) = / (14 Ingy)dP = / r1IngodP # 0.
e=0 Q B
This contradicts the choice of Q.
Thus, we have proved that Qg has the form Qy = const e{™X)I4P with some 75 € R,
A € F. Let us now prove that P(Q2\ A) = 0. If this is not true, then we can find a set B € F



such that 0 < P(B) < oo, X is bounded on B, and P(B\ A) > 0. It follows from the first
part of (ii) that there exists 71 € R? such that the measure Q; = const e<71’X>IBP belongs
to £. Then (1 —¢)Qp +eQ; € & for any € € [0,1]. We have

H((1-¢)Qp+¢Q1,P)

= / (1 —e)go+ eq1) In((1 — e)go + eq1)dP + / eq1 Ineq,dP,
A B\A

where ¢ = dd%. It is clear that there exists a sufficiently small ¢ > 0 such that H((1 —
€)Qo + €Q1,P) < H(Qq,P). This contradicts the choice of Qq.

Thus, we have proved that Qp has the form Qg = const e{™X)P with some 75 € R,
Then

o(10) = —In / el X dP = —H(Qo, P), (2.6)
Q
f Xe T0,X
’(/)(7'(]) fQ 7_0’ /XdQ(] =0. (27)

If there exists a point 71 € R¢ such that ¢(71) < ¢(7g), then
Jo(m1 — 70, X)el0X0dP g

Jo, e ap T de

0(p((1 — 6)7’0 + 67‘1) < 0,
=

which contradicts (2.7). Consequently, ¢(79) = inf{p(7) : 7 € R?}. The contradiction
obtained shows that the measure Qg does not exist. O

Corollary 2.3. Let m € R, o # 0. The minimum of [y q(z)Ing(z)dz over the set

{q >0 /Rq(m)dm — 1, /qu(x)dx = m, /R(x — m)%q(z)dz = 02}

is attained (only) at the density of the normal distribution with the mean m and the vari-

ance 0'2 .

Corollary 2.4. Let m > 0. The minimum of fR z)Ing(x)dx over the set

{q >0 /R+ o(2)dz = 1, /R+ sq(z)dzs = m}

is attained (only) at the density of the exponential distribution with the mean m.

2. Critical points of the relative entropy. We have found the measure, at which
the functional Q — H(Q,P) attains its minimum over £. Let us now find the critical points
of this functional. For Q € &£, let Dq denote the set that consists of measurable bounded
functions r : Q@ — R with the following property: there exists > 0 such that Q +reP € £
for any € € [0,6).

Definition 2.5. An element Q € £ is a critical point of the functional Q — H(Q,P) if
for any r € Dq, the derivative dg‘ _oH(Q+erP,P) does not exist or equals zero.

Theorem 2.6. An element Q € & is a critical point of the functional Q — H(Q,P) if
and only if Q has the form
Q = const e<T’X>IAP

with some 7 € RY and A € F.



Proof. Suppose that Q has the described form. Then, for any r € Dq,

H(Q+erP,P) :/(q+5r) In(q + er)dP,
Q

where ¢ = 98. If P({r > 0,g=0}) =0, then

i H(Q—l—erP,P):/

de le=0 Q

:/7‘<T,X>dp—/’rdp ln/ ™ N dp = 0.
A A A

If P({r > 0,q =0}) > 0, then this derivative does not exist.
The reverse implication has been verified in the proof of Theorem 2.2 (ii). O

r(1+4Inq)dP = / r1lngdP
A

3 Statistical Physics:
Stable and Metastable States

1. Stable states. Let us consider a system that consists of many particles. Each of the
particles can be in one of the possible elementary states w € 2. The state of the system is
a positive finite measure Q such that Q <« P, where P is a fixed positive o-finite measure
on Q. The value Q(2) is interpreted as the mass of the system and P(Q) is interpreted as
the volume of the system. If the system is in a state Q, then, for any measurable set A C €2,
the total mass of the particles, whose states belong to A, is Q(A). Let X : @ — Ry be
a function, whose value at a point w is interpreted as the energy level corresponding to w.
The interior energy of the system in a state Q is fQ XdQ (i.e. we consider a system with
no interaction). The (Boltzmann) entropy of the system in a state Q is — [, ln(ﬁ ‘é—g)dQ
(note that if Q is a probability measure, then this quantity coincides with H(Q,P) up to a
sign).

In this interpretation, the problem of the relative entropy minimization under linear
constraints means maximizing the entropy under the fixed interior energy (here the constraint
fQ XdQ = 0 should be replaced by the constraint fQ XdQ = FE, where E is a positive
number). The problem of finding the measure Q,, at which the minimum of H(Q,P) (over
the measures Q < P satisfying Q(2) = M and fQ XdQ = E) is attained, means determining
the stable state of a system corresponding to the mass M and the interior energy E.

The value ! dQ

is interpreted as the free energy of the system in a state Q, while the Lagrange multiplier
T > 0 is interpreted as the temperature.

In this interpretation, the problem of the minimization of (3.1) (see Lemma 2.1) means
minimizing the free energy under the fixed temperature. The problem of finding the mea-
sure Q,, at which the minimum of (3.1) (over all the measures Q < P with Q(Q2) = M) is
attained, means determining the stable state corresponding to the mass M and the temper-
ature T'.

The statement below follows from Lemma 2.1. It yields the stable state, the free energy,
the interior energy, and the entropy of the stable state.

Theorem 3.1. Let M >0, T > 0. Suppose that fQ e X/TdP < > and fQ Xe X/Tdp <
0.



(1) The minimum of (3.1) over the positive measures Q < P with Q(Q2) = M is attained

at the unique measure
e—X/T

=M-—-———FP.
Jqe=X/TadpP
(ii) Let F', E, and S denote the free energy, the interior energy, and the entropy of Q..

Then
F=—-MT ln< / eX/TdP),
Q

Qa

i apda X TP
JqeX/TapP
M [, Xe X/Tdp y
=227 | M Tap ).
S T er—X/TdP + n /Qe

(iii) Suppose that P is finite, i.e. P =V Pq, where Py is a probability measure. Then

oF 9B _, 08 _ ~ oF o, OB 05
ov - P v v ar T or T or
where p 1= % 1s interpreted as the pressure and p := % 18 interpreted as the density.

(iv) If the measure P o X~1 is not degenerate, then E and S are strictly increasing in
T.
(v) Set a =sup{zr e R: X >z P-a.e.}. Then

E—a, S— MIhP(X =a).
T10 T10

Remark. The measure Q, defined in (i) corresponds to the Gibbs state (see Landau and
Lifshits [11]). The equalities in (iii) are known thermodynamic relations. The statement
of (v) for the case, where P is the counting measure, corresponds to the Nernst theorem (see
Landau and Lifshits [11]). O

2. Metastable states. The problem of finding the critical points of the functional
Q — H(Q,P) (see Theorem 2.6) means determining the metastable states of a system, i.e.
the states, in which the system may stay for a very long time before it reaches the stable
state. Theorem 2.6 shows that the metastable states have the form

o~ X/T

A
M- 7
Q N e—X/Tgp

P,
where A € F. The statements of Theorem 3.1 (ii)—(v) remain true for the free energy, the
interior energy, and the entropy of Q2 if one replaces P by P|4.

4 Information Theory: Data Compression

Let © be a collection of codewords (£ may be finite or countable). Each codeword w has
its cost X(w) > 0. Let (0,F0,Po) be a probability space interpreted as the source of
information. The source coding is a map F' : Qy — Q. This map induces the measure Q =
Qoo F~! on Q. We will call the quantity > .o X (w)g(w) the average cost of the coding F.
The quantity — > - ¢(w)Ing(w) will be called the amount of information contained in the
coding F'. The problem of the data compression means maximizing the amount of information
contained in a coding under the fixed average cost of the coding.



Consider the function

o(1) =1n Z X reR
weN

(it may take on the value +o00). Note that ¢ is differentiable inside the interval {7 € R :

o(7) < oo}
In what follows, we will use the notation

H(C) = sup{—%;q(w) ingw) ).

where the supremum is taken over the probability measures Q on Q with }° o X(w)q(w) <
C.

Theorem 4.1. Let C > 0. Suppose that there exists 7. € R such that ¢'(1.) = C. Then
H(C) = p(1:) — Crs.

Proof. This statement follows from Theorem 2.2 (we only need to consider X —C' instead
of X and to take P as a counting measure). O

Example 4.2. Let Q = {(a1,...,a,) : n € N, a; € A}, where A is a D -ary alphabet.
Let the cost of a codeword (ay,...,a,) be n. Then

lim % =InD.

C—oo
Proof. We have
o
De™ 1
o(r) = 1nnzlemD" =1In 1 De = ln<71 — Do 1), TER
The function ¢ is finite on (—oo, —In D) and

, De™(1 — De) 1
@ (1) = T = =
(1 — De™)?De 1 — De

T € (—o0,—1nD).

For the point 7, = 7.(C) defined as the solution of the equation ¢'(7.) = C', we have
lim M: lim M— Iim 7, =— lim 7, =InD
C—oo C C—oo C C—oo C—oo

(see Figure 1). O

|
e() | /(p(T*) +C(1 —7)
|
- AH©)
|

Figure 1



Example 4.3. Let Q = {(a1,...,ap) :n €N, a; € A}, where A = {Ay,...,Ap} isa
D -ary alphabet. Let the cost of a letter A; be A\(A;), so that the cost of a codeword (a1, ... ay)
is May) + -+ Xap). Then
H(C)

lim ——~=—719
Cooo C ’

where 1y is defined as the solution of the equation

D
eONA) _ 1,
2

1
Proof. We have

p(r)=Iny > exp{TA(A;) + -+ TA(4;,)}

n=1 il,...,in

oo D n
_ SR A n(r) -
lnnZl<Ze ) lnil—n(T) ln(l_ 1), 7eR

i=1
where

n(r) = ZeT)‘(Ai), T ER
i=1
The function ¢ is finite on the interval (—oo,7), and
/
/ ' (7)
¢(T) = =
() (L = (7))

For the point 7, = 7,(C) defined as the solution of the equation ¢'(7,) = C', we have

T € (—00, Tp).

. () — Cr, . 1 Cn(r.) .
LALI AL e — -1) - . = —T0. O
Jm T dm I\ iy ) T =
5 Financial Mathematics:
Minimal Entropy Martingale Measure
1. One-period model. Let
(2 F, (Fn)o<n<n, P, (Xn)o<n<n) (5.1)

be an asset price model. Here (F,) is a filtration and X is a d-dimensional (F,)-adapted
process. From the financial point of view, X is the (discounted) price of the ith asset at
the time n. Let us recall some basic definitions and facts of financial mathematics.

Definition 5.1. A self-financing strategy is a pair 7 = (z, H), where £ € R and H =
(Hi:n=1,...,N,i=1,...,d) is an (F,)-predictable process, i.e. H, is F, i-measurable
for any n = 1,...,N. The value z is called the initial capital of the strategy w. The
(discounted) capital of the strategy = is the process

n
XT=z+Y (Hj,AX;), n=0,...,N,
=1

where AX,, = X,, — X,,_1.

10



Definition 5.2. A strategy 7 = (z, H) realizes arbitrage if

(i) z =0,

(ii) X3 >0 P-as.

(iii) P(X% > 0) > 0.

A model is said to be arbitrage-free if such a strategy does not exist.

Let P,(w) be the conditional distribution Law(AX,, | F,_1)(w). By Sp(w) we denote the
support of P, (w). Let L,(w) be the smallest affine subspace of R? containing S, (w). By

Sn (w) we denote the relative interior of S, (w), i.e. the interior of S,(w) in the relative
topology of L, (w).

Proposition 5.3. (First Fundamental Theorem of Asset Pricing). The following
conditions are equivalent:

(i) the model is arbitrage-free;

(ii) there exists a probability measure Q ~ P such that X is an (F,,Q)-martingale;

(iii) for any n=1,...,N and P-a.e. w, 0 € g’n(w)

For the proof, see, for example, Shiryaev [16; Ch.V, §2e].

In the statements below we use the notation

M?* ={Q:Q is a probability measure on (2, F), Q < P,
and X is an (F,, Q)-local martingale}.

An important problem of financial mathematics is to find “the most natural” element of M?.
A possible way to solve it is to find the element of M®, which minimizes the relative entropy
H(Q,P). The corresponding measure is called the minimal entropy martingale measure. The

following result is well known. It states that, for the one-period model, the minimal entropy
martingale measure is obtained as the Esscher transform of P.

Theorem 5.4. Consider an arbitrage-free model of the form (5.1) with N = 1. Suppose
that Fo is P-trivial and Epel™2X1) < oo for any 7 € RY. Then there ezists a point T, at
which the function (1) := Epel™®X1) attains its minimum. The minimum of H(Q,P) over
M is attained at the unique measure

Q. = const e{™AX1)p,

Proof. Note that in this case
M?® ={Q : Q is a probability measure on (2, F), Q < P, EAX; = 0}.
The desired statement now follows from Theorem 2.2. O

2. Multiperiod model. Our next goal is to describe the structure of the minimal
entropy martingale measure in the general multiperiod model. We need an auxiliary lemma.

Lemma 5.5. Let (2, F,P) be a probability space, G C F be a sub-o-field, Y : Q2 — R be
a random wvariable, and X : Q — R be a random vector such that Ep(e<T’X>+Y ‘ g) < oo P-

a.s. for any 7 € RY. Suppose that 0 € g’(w) for P-a.e. w, where g'(w) denotes the relative
interior of the support of the conditional distribution Law(X |G)(w). Then there exists a
G x B(R%) -measurable version of the function

o(w, 7) = Ep (e<T’X>+Y ‘ Q)(w), weD TeR

11



such that, for any w, the map 7 — @(T,w) is continuous and (T, w) T oo. For this
T||—00

version, there exists a G-measurable map T, : Q@ — R such that, for P-a.e. w,

To(w) = argmin ¢(w, 7).
TER

Proof. Let P, denote the conditional distribution Law(X,Y |G)(w). Let X : R
I@ and Y : Rl 5 R be the canonical mappings, i.e. X(ml,...,xd“) = (z',..., 2%,
Y(z',...,2%1) = 2¢+1, Then the function

Ep, B T = g’(w) and Ep, XY < 00 YA € RY,
o(T,w) =

0 otherwise

satisfies the desired properties.
In order to prove the existence of 7,, we will consider the function

n(w) = inf{p(w,7) : 7 € R4} = inf{p(w,7) : 7 € Q}.

This function is G-measurable, and therefore, the set {(w,7) : p(w,7) = n(w)} belongs to
G x B(R%). Now, the existence of 7, follows from the measurable selection theorem (see
Dellacherie and Meyer [5; Theorem 8.2., p. 252]). O

Let us now consider an arbitrage-free model of the form (5.1). Suppose that
Ep (e<T’AX"> |fn,1) < oo P-as. forany n=1,...,N, 7 € R¢ (for example, the conditionally
Gaussian models satisfy this assumption). Construct the random variables 7%, ..., 7] (going
downwards from N to 1) by the equality

= argminE(exp{(T, AX,) + i (7, AXZ-)H fnl) (5.2)

TGRd i=n-+1

as described in Lemma 5.5. The applicability of this lemma follows from Proposition 5.3 and
the inequalities

N

Ep <exp{(7, AX,) + Z (17, AXz')H ]:'nl)
1=n—+1
N
= Ep <e<T,AXn>Ep <6Xp{<T;+1,AXn+1> + Z (1, AX;) } ‘]—" )‘ e 1)

i=n—+2

N
s e(er e (e 3 17030 Hﬂ)\ )
i=n—+2

N
:Ep(exp{ (1, AX,) + Z ‘Tn 1)

i=n—+2
<...<Ep (6<T’AX"> ‘.7:“71), T E R?,
(These inequalities are verified for n = N, ..., 1 going downwards from N to 1.)

12



Theorem 5.6. Consider an arbitrage-free model of the form (5.1).  Suppose that
Ep (e<T’AX"> |.7-"n_1) < oo P-a.s. forany n =1,...,N, 7 € R*. Then the minimum of
H(Q,P) over M?® is attained at the unique measure

N
Q. = const exp{Z(ﬁ{, AXn)}P, (5.3)

n=1

where the random variables 7, are defined by (5.2). Furthermore,

H(Q.,P) = —InEp exp{i(ﬁs, AXn)}.

n=1
Proof. Suppose that there exists a measure Q € M® such that H(Q,P) < H(Q.,P). Set

Un = |17

n=0,...,N, (5.4)

e(TAXEp (exp{ N, 1 (T, AX) } | F)
Ep (exp{32L, (77, AX)} | Fu 1)

where F_q1 :={0,Q}, AXy:=0. Consider the measures

V, =

, n=0,...,N, (5.5)

Qn=UpVpi1...VNP, n=-1,...,N,

where U_q := 1. Let us prove that, for any £k =0,..., N,

H(Qg-1,P) < H(Qg, P) (5.6)
and

Ep(Vk...VNank...VN|fk_1) :Yk—la (57)

where

N
Y, = —InEp <exp{ Z (Ti*,AXi)H]:n), n=-1,...,N.
i=n-+1

Suppose that we have proved these statements for k =n +1,..., N. Let us prove them

for kK =n. We have

H(Qu_1,P) = EpUp_1V, ...V InUp_1V, ... Vi

= EpUp_1Vp...VyInVipsq... Vi
+EpUp_1V,, ... VyInV,
+EpUp_1V,, ...V InUy,_;

= EpEp(Un_1Vy ...V InVyi1... Vi | Fp)
+ EpEp(Un_1Vp...VyInV, | Fp)
+ EpEp(Un_1Vp...VyInUy 1| Fn1)

= EpU, 1V, Y, + EpUy,_1V,, InV,, + EpUy_1 InU,,_;.

Here we used (5.7) for k = n+1 and the obvious equality Ep(V;|F;) =1 for i > j. Similarly,
H(Qu, P) = EpUp_1 WYy + EpUn_1 Wy In Wi, + EpUp—1 InUp_1, (5.9)

where

Un
Wo = 1(Uny > 0) 5
e
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Let P, denote the conditional distribution Law(AXn,Yn,Tn,Un,Vn,Wn | Fn-1)(w). Let
AXn, Yn, T, Un, Vn, W denote the coordinate maps on R2¥+4 (AX and 7, take on
values in R?, while the other four maps take on values in R). It follows from (5 7) with
k=n+1 that Y, > 0. Using the equality

EP (e<T,AXn>—Yn ‘ fnfl)

N

z:n+1
}‘ n— 1) TERd,

Ty = argféldin Epwe<T’AX">*?" (5.10)
TE

N
=Ep <exp{ 7, AX,) + Z

1=n—+1

we get

for P-a.e. w. Equality (5.5) can be rewritten as

- (T AX )=V
Vo = (5.11)
EP e< 'ruAX > Y

for P-a.e. w. The condition Ep, (e<T’AX">*Y" ‘7n—1) < oo P-a.s. implies that
Ep, [|AX, | eTAXn=Vn < o (5.12)
for P-a.e. w. It follows from the equality Y, > 0 that
Ep, Vel AXn) =V o o (5.13)
for P-a.e. w. By the definition of W), we have
Ep, W, =1 (5.14)
for P-a.e. w from the set {U,_1 > 0}. The condition Q € M* implies that
EQUIAXn | [ Fr-1) = Ep(Wyl|AXn| [ Fro1) < oo P-as.
(see [16; Ch. II, §1c]). Consequently,
Ep, | AX,||W, < o0 (5.15)

for P-a.e. w from the set {U,—1 > 0}. Thanks to conditions (5.11)—(5.15) and Lemma 2.1,
we can write

— Ep, Vo(7, AX ) + Ep VoV + Ep Vi, In,

Lo o " (5.16)
< —Ep, W (7, AX,) + Ep W, Y, + Ep, W, In W,

for P-a.e. w from the set {U,_1 > 0} Indeed, if Eprnf’n = 00, then this inequality is
trivial; otherwise, it follows from Lemma 2.1. By (5.10) and (5.11),

Ep, VoAX, =0 (5.17)
for P-a.e. w. Due to the equality

EP(WnAXn | ‘7:1171) = I(Un,1 > O)EQ(AXn | ‘7:”*1) =0,

14



we have o
Ep, AX, W, =0 (5.18)

for P-a.e. w from the set {U,_1 > 0}. Combining (5.16)—(5.18) together, we get
Ep, VoY, +Ep,V,InV, < Ep,W,Y,, + Ep, W, In W,

for P-a.e. w from the set {U,_1 > 0}. Using (5.8) and (5.9), we obtain the inequality
H(Qp-1,P) < H(Qp, P). Furthermore,

(7’ AXn) Yn
Ep, V Y + Ep,, V ann = f o ,AXn)fYnde dP,,
(7 AX (T AX )~V
/ n— dP,,
f AXn —Yn dP,, fQ e\ThsAXn)=Yn dP,,

= —In / TabXn) Yo gp
Q

for P-a.e. w (here we used (5.17)). Hence,

Ep(Vy...VnInV, ... VN |Fn-1)
= Ep(Vn o VNIn Vg VN | .7:,171) + EP(Vn ...VyInV, | .7:,171)
= EP(VnYn | ‘7:1171) + EP(Vn ann | ‘7:1171)
= —InEp (€<T;’AXTL>_Y" ‘fnfl) =Y, 1.
Thus, we have proved (5.6) and (5.7) for £ =0,...,N
Note that Q. = Q_1. Using (5.17), we get
Ep(Vo... VNAX, | Fr1)
Ep(Vo... VN |Fn-1)
Ep(Ep(Vi ... VNAX, | Fn) | Fa-1)
EP(Vn PR VN |fn_1)
Ep(VaAX, | Fr1)

= =0.
Er(Vn ... Vv | Fn1)

EQ* (AXn |'7:n—1) =

Consequently, Q, € M. Due to the equality Q = Qn, we have H(Q,,P) < H(Q,P) and

N
H(Q.,P)=Ep(Vy...VyInVy...Vy) =Y_; = —InEp exp{Z<T;,AXn)}.

n=1

Thus, the minimum of H(Q,P) over M?® is attained at the measure Q.. The uniqueness
of the minimizing measure follows from the convexity of M and the strict convexity of the
function z — zlnzx. O

Remark. The method of constructing the minimal entropy martingale measure described
above is somewhat similar to the construction of some martingale measure through the con-
ditional Esscher transform; see Rogers [14]. O

Corollary 5.7. Consider an arbitrage-free model of the form (5.1). Suppose that AX,

is independent of Fp_1 for any n=1,...,N, and Epel™®Xn) < 0 for any n=1,...,N,
T € R4, Then, for each n = 1,...,N, there exists a point T € R, at which the function
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T,AXy)

©n (1) = Epéel attains its minimum. The minimum of H(Q,P) over M® is attained at

the unique measure

N
Q. = const exp{Z(T:{, AXn)}P.

n=1

Proof. It is sufficient to note that the conditional expectations in (5.2) coincide with the
usual ones. The result now follows from Theorem 5.6. O

Corollary 5.8. Consider a one-dimensional arbitrage-free model of the form (5.1). Sup-
pose that X, = e, where AY, =Y, —Y,_; is independent of Fn_1 for any n=1,...,N,
and EpeT(eAYn_l) < oo forany n=1,...,N, 7 € R. Then, for each n =1,..., N, there
exists a point X € R, at which the function @n,(\) = Epe/\(eAY"*D attains its minimum.
The minimum of H(Q,P) over M® is attained at the unique measure

N *

Q. = const exp{z XAn AXH}P.

n—1 -1

Proof. Let us prove that, for any k= N,...,1, the random variable 7; defined by (5.2)

equals Xi’z_ - Suppose that we have proved this statement for kK =n+1,..., N. Let us prove

it for kK = n. We have

N
Ep <exp{TAXn—|- Z Ti*AXi}‘fn—l>

i=n+1

= Ep <eTAX"Ep <exp{ i A (e — 1)}‘ }"n) ‘]—"n_1>

i=n—+1

N
=Ep exp{ Z A (eAYi - 1)} Ep (eTAX" | Fn1)

1=n+1
N
=Ep exp{ Z A (eAYi — 1) } on(TXpn-1).
1=n+1

Thus, we have verified that 7] = % for k= N,...,1. The desired result now follows from
Theorem 5.6. O

3. Exponential utility maximization. As already mentioned, the problem of finding
the minimal entropy martingale measure is dual to the problem of the exponential utility
maximization.

Definition 5.9. The exponential utility of a strategy = is defined as
U(n) = —Epe XA,
Theorem 5.10. Consider an arbitrage-free model of the form (5.1). Suppose that
Ep(€<T’AX"> ‘,’Fn_l) < oo P-a.s. foranyn =1,...,N, 7 € R¢. Let x € R. Then the

mazimum of U(w) over all the strategies m with the initial capital x is attained at the unique
strategy m, = (x, H*), where H) = —1 and the random variables 7, are given by (5.2).
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Proof. Suppose that there exists a strategy m = (z, H) such that U(x) > U(n*). This
means that

N N
Ep exp{—Zwi,AXi)} < Ep exp{ > (Hf AX) }
=1 =1

Consider the strategies 7(") = (¢, H™), n=0,..., N defined as follows

Hi(n): H; %fZ:SH,
H if i>n.

Then, for each n =1,..., N, we have
N
Ep <exp{— Sy, AXi)} ‘ fnl)
i=1
n—1 N
= exp{—Z(Hi,AX } p<exp{ (Hp, AXn) = > (H;*,AXZ-)H}‘nl)
i=1 j=
n—1 N
< eXp{—Z(E‘,AX } P<GXP{ Hy AXp)— Y <H?,AXz')an1)
i=1 =
N
=Ep <eXP{_ Z(Hz'(n)a AXi)} ‘fn1>a
i=1

which implies that U(zx("Y) < U(x™). Since 7, = 7(» and 7 = =l
contradiction. Thus, the maximum of U(x) is attained at the strategy .
The uniqueness of the maximizing strategy follows from the strict convexity of the function

T —e T, U

N). we obtain a

Remark. We have
—H(Q.,P) = 2+ In(~U(r,),

where Q. is the measure given by (5.3).
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