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Abstract. We consider a two-dimensional random walk that moves in the
horizontal direction on the half-plane {y > z} and in the vertical direction on
the half-plane {y < z}. The limit behaviour (as the time interval between two
steps and the size of each step tend to zero) of this ”horizontal-vertical” random
walk is investigated.

In order to solve this problem, we prove an extension of the Donsker-
Prokhorov invariance principle.  The extension states that the discrete-
time stochastic integrals with respect to the appropriately renormalized one-
dimensional random walk converge in distribution to the corresponding stochas-
tic integral with respect to a Brownian motion.

This extension enables us to construct a discrete-time approximation of the
local time of a Brownian motion.

We also provide discrete-time approximations of skew Brownian motions.
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1 Introduction

1. Limit behaviour of the ”horizontal-vertical” random walk. Let (&),
be a sequence of i.i.d. random variables with E§, = 0, E§ = 1. We construct
a two-dimensional "horizontal-vertical” random walk (Zy; k € Z,) = (Xy, Yy; k € Z )
by the following procedure: Xy =0, Yy =0,

Xi + &1 if Y > X,
Xk if 1/k < Xk7

Vi — & if Y < X

In other words, Zj,; is obtained from Z; by the shift whose modulus equals |&,4|. If
7y, belongs to the half-plane {y > x}, then the shift occurs in the horizontal direction.
If Z; belongs to the half-plane {y < x}, then the shift occurs in the vertical direction
(see Figure 1). For each n € N={1,2,...}, we consider

1
— 7., keZ,=1{0,12,...
\/ﬁ k + { }

and construct the process (Z;'; ¢ > 0) by the linear interpolation of (Z},; k € Z).

—

Figure 1. The "horizontal-vertical” random walk

The following question arises: What is the limit behaviour (as n — oo) of the
process (Z';t>0)7

We prove in Section 5 that the sequence of processes (Z;'; ¢t > 0) converges in
distribution (as n — oco) to a process (Z;; t > 0) and give the explicit form of this
process (Theorem 5.1).

We also present another equivalent construction of the limit process (Z;; ¢ > 0).
This construction shows, in particular, that the paths of Z yield an interesting and
transparent representation of the Brownian excursions.

2. Extensions of the Donsker-Prokhorov invariance principle. In order
to solve the above problem, we provide in Section 2 the following extension of the
Donsker-Prokhorov invariance principle.



Let (&), be a sequence of i.i.d. random variables with E§, = 0, E¢Z = 1. Let
f:R — R? be a Borel function. For each n € N, we set £ = ﬁﬁk and consider

k
Pm=>_ & ke,
=1

k
Yim =D F(XGnm)& ke
=1

Construct the processes (X' ¢t > 0), (Y;"; ¢t > 0) by linear interpolation of (X}, : k €

Zy), (Yk’;n; k € Z.). Then, under some regularity conditions imposed on f and &,

t

oz 0) 2 (B [ (B)ass 2 0),
n—oo 0

where B is a Brownian motion started at zero (Theorems 2.2, 2.3). The sign 12 here

corresponds to the weak convergence of probability measures on C(R, , R¢™!) endowed

with the topology of uniform convergence on compact intervals. Note that, with no

regularity conditions on f and &, this result is not true (see Example 2.4).

The convergence of stochastic integrals in a more general situation (for a semi-
martingale instead of a Brownian motion and for arbitrary integrands instead of f(B))
is studied in the book [9; Ch. IX, §5b] by J. Jacod and A.N. Shiryaev. However, these
general results cannot be applied to our situation in the case, where f is not continuous.

The method used to prove Theorems 2.2, 2.3 is based on the Skorokhod embedding
problem. This method is well known in limit theorems. For instance, the book [3;
Ch. 13, §5] by L. Breiman contains a simple proof of the Donsker-Prokhorov invariance
principle that employs this method. B. Cadre [5] provided a discrete-time approxima-
tion of the intersection local time of a two-dimensional Brownian motion employing
Skorokhod’s embedding problem.

3. Approximation of the Brownian local time. Theorem 2.2 yields the
following corollary (see Section 3).

Let (&)%2, be a sequence of ii.d. random variables with P(§ = 1) = P(& =
—1) = 1. Let us set

k

Xe=) & k€L,

i=1
k—1
Ly =) I(X;=0), ke,
i=0
For each n € N, we consider

1 1
X, L', =—1L, keZ
\/ﬁ k k/n \/ﬁk +

and construct the processes (X/; ¢t > 0), (L};t > 0) by linear interpolation of

(X7 LY > 0) —2% (By, Ly; t > 0),

n—oo
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where B is a Brownian motion started at zero and L is its local time at zero.

4. Approximations of skew Brownian motions. The method based on the
Skorokhod embedding problem enables us to prove one more extension of the Donsker-
Prokhorov invariance principle (see Section 4).

Let (Xy; k € Z,) be an integer-valued Markov chain with Xy = 0 and the transi-
tion probabilities

1 1
Pk =i+1[Xp=0) =g, PXen=i-1|X=9=5 if i#£0,
P(Xjp1=1[ Xy =0) =p, P(Xpp1=-1] X, =0)=1-p,
where p € [0,1]. Let f:R — R? be a Borel function. For each n € N, we consider

1
\/ﬁ

}/kn/n Zf (i—1) /n z' /n Xénz'fl)/n), ke Z_|_

Xlg/n = Xk, ke L,

and construct the processes (X;t > 0), (Y*;t > 0) by linear interpolation of
(X,?/n; keZ,), (Yk”/n; k € Z.). Then, under some regularity conditions imposed

on f,

o e 0) 2 (5 [ s B 120), (1)

n—od

where BP is a skew Brownian motion with parameter p started at zero.
This result provides discrete-time approximations of skew Brownian motions. It
completes the result of J.M. Harrison and L.A. Shepp [6] who proved the convergence

Law

of the marginal distributions, which we denote by X}’ — B, t > 0. The conver-

gence of the first components in (1.1) follows from the paper [4] by J.K. Brooks and
R.V. Chacon. However, we use another (simpler) method.

There also exist other approximations of skew Brownian motions. W.A. Rosenkrantz [11]
provided an approximation of a skew Brownian motion by appropriately renormalized
solutions of the stochastic differential equation dX; = b(X;)dt + dB;.

2 Extensions of the Donsker-Prokhorov Invariance
Principle
1. The results. Let (&), be a sequence of i.i.d. random variables with E&, = 0,

E&Z =1. Let f:R — R? be a Borel function. For each n € N, we set £ = ﬁ&f and
consider

k
Xlg/n = Z&na ke Z+7 (21)

Ykn/n Zf (i-1) /n n, ke Z+‘ (22)

Construct the processes (X} ¢ > 0), (Y;"; ¢ > 0) by linear interpolation of (X,’j/ i k€
L), (Y, k € Zy).



Definition 2.1. A function f is piecewise continuous if there exists a collection
of disjoint intervals (J;)72; (each .J, may be closed, open or semi-open; it may also
consist of one point) with the following properties:

i) Upse; Jr = R and, for any compact interval .J, there exists m € N such that
UZ; i 2 J;

ii) the restriction of f to each Jj is continuous on Jj and has finite limits at those
endpoints of J; that do not belong to .Jj.

Remark. Any piecewise continuous function is locally bounded. a

Theorem 2.2. If f is piecewise continuous, then

n—oo

t
(X7 Y7 1> 0) (Bt, JNEaE o), (23)
0

where B is a Brownian motion started at zero.

Theorem 2.3. If f is locally bounded and there exists m € N such that the dis-
tribution of & + --- + &y has an absolutely continuous (with respect to the Lebesgue
measure) component, then (2.3) holds.

Remark. Theorem 2.2 implies the Donsker-Prokhorov invariance principle (for the
sums of identically distributed random variables). O

The following example shows that the regularity conditions imposed on f and &
in Theorems 2.2, 2.3 are essential.

Example 2.4. Let ()7, be ii.d. random variables with P(§ = 1) = P(§ =

-1) = % Let A = {%, m € Z,n € N} and set f = Ig\4. Then all the random

variables X}, =~ take values in A, and hence, Yy, =0. On the other hand,

t
/ f(Bs)st = Bt: t Z O:
0

and therefore, (2.3) does not hold.

2. The proofs. Theorem 2.2 follows from Lemma 2.8 given below. Theorem 2.3
follows from Lemma 2.10.

Proposition 2.5 (Skorokhod). Let & be a random variable with E€ =0, EE* <
oo. Let (By; t > 0) be a Brownian motion started at zero. Then there exists a (FP)-
stopping time T such that Er = E€* and Law(B,) = Law(§).

Many solutions of this problem have been obtained; see, for example, [10; Ch. VI,

(5.4)].

Lemma 2.6. Let (By; t > 0) be a Brownian motion started at zero. There ezists
a collection (17; n € N,k € Zy.) of (FP)-stopping times such that 78 =0, 7 < 17,

Law (Bm; k € Z.) = Law( s k€ Z.), n€N (2.4)
and .
VmeN, max |7} — — 0. (2.5)
k=0,...mn nl n—oo




Proof. Let (WW;; ¢ > 0) be a Brownian motion started at zero. According to
Proposition 2.5, there exists a stopping time 7 such that Er = 1 and Law(W,) =
Law(&;). The random variable 7 is a functional of the paths of W, which will be
denoted as 7 = 7(W). Let us now construct a sequence of processes (W;*; ¢t > 0) and
a sequence of random variables (7,,) by the following procedure:

wl=w, m=T1(Wh),
T2 = T(W2)7
m=7(W3)...
Note that each 7 is a functional of W. This will be denoted as 7, = 7 (W).
It follows from the strong Markov property of W that the sequence (7,,)5%, is a

sequence of i.i.d. random variables with E7,, = 1. By the strong law of large numbers,
for any ¢ > 0, there exists N; € N such that

n
Zn—n‘<n5}>1—5.

i=1

P{anNh
Take N, € N such that
Ny
1 £ N1 £
P — i< z¢>1-—¢ — < =
{NQ;T 2} c NQ 2
Then, for any n > Ny, m € N, we have
k
1 k
—Zn——‘<m5}>1—25.
n <= n

For any n € N, the process B} = \/nBy), is again a Brownian motion started at
zero. Therefore, the random variables

P{Vk =1,...mn,

k
1
= 527}‘(3"), keZ,
=1

are correctly defined. One can easily verify that they satisfy the conditions of the
lemma. O

Definition 2.7. A sequence of d-dimensional processes (Z'; t > 0) converges to
a process (Zy; t > 0) in probability uniformly on compact intervals if

Vt >0, sup|Z" — Z,|| ——s 0.
s<t n—oc

We will use the notation:

(215 1> 0) = (Z 1 > 0).
n—oo
Lemma 2.8. Let f be piecewise continuous. Let (By; t > 0) be a Brownian motion
started at zero and (1f'; n € Nk € Z) be the collection of stopping times given by
Lemma 2.6. Set § = Byn — Brn - and define the processes (X7t > 0), (Y/"; t > 0)
through & using (2.1), (2.2). Then

t
(XYt > 0) —2 <Bt,/ f(B,)dB,; t > 0).
0

n—oo



Proof. It follows from the continuity of B that

vt 20, sup |By - Ba:| 2550. (2.6)
{z,y€[0,t] : |z—y|<e} €l0

Furthermore, (2.5) implies that

P
Vt >0, max |r —70 4 ——0.
{k:7]r€[0,t]} n—00

Since the processes X" and B coincide at the times 77" and the process X" is linear
on each [}, 7/'], we arrive at

(X7 > 0) 25 (B t > 0).

n—o0

Thus, it only remains to prove the convergence

(V)5 2 0) =2 </f st,t>0> (2.7)

It will suffice to check (2.7) for one-dimensional functions f. We will do this in several
steps.
Step 1. Suppose that f(x) = I(x > 0). Let us consider the processes

t
Y :/ H!dB,, t>0, (2.8)
0
where
ZI nL<t<T)f(Br,), t>0. (2.9)
It follows from the equality
k
Y=Y f(Bu,) By —By,), keZy
i=1

that 177% =Y} forany n €N, k€ Z,.
Fix ¢ > 0. It follows from (2.6) that, for any ¢ > 0, there exists ¢ > 0 such that,
for any z,y € [¢,t] with |y — x| < §, we have

P{f(B) is constant on [z,y]} > 1 —e.

Combining this with (2.5), we deduce that there exists N € N such that, for any
n > N and any k between en and tn,

P{f(B) is constant on [r}"_,7/']} > 1 —e.

Consequently,
t
vt >0, E/ (H" — f(B,))*ds — 0.
0

n—oo

Due to the Burkholder-Davis-Gundy inequality (see [10; Ch. IV, (4.1)]) or rather Doob’s
L?-inequality,

S 2
Vt >0, Esup <?;" —/ f(Bu)dBu> —— 0.
0

s<t n— 00
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In particular,

Vt >0, max
{k:7]7€[0,t]}

o
¥ - /0 f(B.)dB,

P
— 0.
n—00

Using the equality }77’]: = Yf]’? and keeping in mind that Y™ is linear on each [7]' ,, 7],
we get (2.7).

Step 2. The same arguments as above show that (2.7) holds for f(z) = I(z > a)
and f(x) = I(x < a), where a € R. Since (2.7) holds for f = 1, it also holds for
f(z)=1I(x > a) and f(z) = I(x < a), where a € R.

Step 3. By linearity, we extend (2.7) to the functions of the form f(z) =
Yot NI (x € J;), where J; are intervals (that may be closed, open or semi-open).

Step 4. Let f be a piecewise continuous function with compact support. Then
f can be uniformly approximated by a sequence of functions (f,;,)5_, of the form
described in Step 3. Define Y, H" by (2.8), (2.9) and define ynm  Hnm in the same
way with f replaced by f,,. Then

Vt >0, |H™ — H}'| <supl|f™(z)— f(z)] —— 0.
rER

m—o0
Consequently,
V¢ >0, sup / H™dB, — / H"dB,| —— 0,
sgt 0 0 m—o0
and the convergence is uniform in n. Thus,
Vt >0, max ?T’%m - }77’% £, 0,
{k:7€[0t]}| * k| m—oo

and the convergence is uniform in n. Combining this with the properties

~ us

Vi>0,VmeN, max |V"— / F™(B,)dBs| —— 0

{k:7€[0,t]} k 0 n—00

and . .
Tk Tk

V¢ >0, max / m(B, st—/ B,)dB,| —%— 0,

we conclude that
~ us
Vt>0, max |V - / f(B,)dB,| —— 0.
{k:7el0t]}| 'k 0 n—00

Using the equality }77’: = Y7 and keeping in mind that Y™ is linear on each [T 1, T,
we get (2.7).

Step 5. Let f be piecewise continuous. Then there exists a sequence (f,,)5_, of
piecewise continuous functions with compact support such that f,, = f on [—m,m].
Define Y™ in the same way as Y™ with f replaced by f,,. Fix ¢t > 0. On the set
A =A{Vs <t, |Bs| < m}, we have Y™ =Y, s <. Furthermore, P(A,,) — 1.

S S

We now proceed similarly to the previous step. O

Proposition 2.9 (Prokhorov). Let (&)52, be a sequence of i.i.d. random vari-
ables with E&, =0, EEE = 1. Set S, =& + -+ &,. Then the distributions of ﬁSn
converge in variation to the normal distribution N(0,1) if and only if there exists
m € N such that the distribution of S,, has an absolutely continuous (with respect to
the Lebesgue measure) component.



For the proof, see [7; Ch. IV, §4].

Lemma 2.10. Let f be locally bounded. Suppose that there exists m € N such
that the distribution of & + --- + &, has an absolutely continuous (with respect to
the Lebesque measure) component. Let (By; t > 0) be a Brownian motion started at
zero and (1{; n € Nk € Z,) be the collection of stopping times given by Lemma 2.6.
Set § = Br» — Brn - and define the processes (Xj';t > 0), (Y,"; ¢t > 0) through &
by (2.1), (2.2). Then

t
(XY > 0) -2 <Bt,/ f(B)dBg; t > 0).
n—oo 0

Proof. Similarly to Lemma 2.8, it will suffice to prove only (2.7) for one-dimensional
functions f. We will do this in several steps.

Step 1. Let a > 0. Let us prove (2.7) for the functions f of the form f(z) = I(z €
A), where A € B([—a,a]). Consider the set

M ={A € B([—a,a]) : (2.7) holds for f = 14}.

It follows from Lemma 2.8 that M contains all the intervals in [—a,a]. Let us check
that M is a monotone class, i.e.

i) [—a,a] € M;

ii)if A,Be€ M and A C B, then B\ A € M;

i) if (A,)%_, € M and A, C A1, then |7 A, € M.

The only nontrivial point is iii). Set A = J>*_; Am. fm = Ia,,, f = I4. Define
Y™, H" by (2.8), (2.9) and define ymm  H™ in the same way with f replaced by fy,.
Let p; denote the Lebesgue measure on R. It follows from Proposition 2.9 that, for
any ¢ > 0, there exist N(¢) € N and d(¢) > 0 such that, for any D € B(R) with
pr(D) < 6(g) and any n > N(e), P(ﬁSn € D) <e. Then, for any D € B(R) with
pr(D) < \/e6(e), any n > e~ 'N(e) and any k > en, we have P(ﬁSk € D) <e. Find
M () € N such that (A \ Ar)) < VES(e). In view of the equality Law(ﬁsk) =
Law(B.»), for any n > e 'N(e), k> en, m > M(c), we get

P(Br € A\ An) <e.
Fix ¢t > 0. For any n > e 'N(g), m > M(e), we have

E / M (HT™ — B2
Tlen] 41
[tn]—1
nm n 2 n n
= Z E(HT,;L —HT,;L) (i1 — 7)
k=[en]+1
[tn]—1
nm n\2/ n n
= Z E[E[(Hfg _HT,;L) (Ter — 7)) | -7:7]%“
k=[en]+1
[tn]—1 1
nm n 2
- Z EE(HT,? _HT,?)
k=[en]+1
[tn]—1

SR

P(BT;?,l €A \ Am) < te

k=[en]+1



Moreover,

en—+1
—

Tlen]+1
E/o (H"™ — H™)*ds < ETin1 <

It follows from the Burkholder-Davis-Gundy inequality (see [10; Ch. IV, (4.1)]) or
rather Doob’s L?-inequality that

E sup (Y —Y")? —— 0.
S<T[tn] n,Mm—00

Arguing in the same way as in the proof of Lemma 2.8 (Step 4), we deduce that

(Y ¢ > 0) By (/f st,t>0>
n—oo

which means that A € M.

Applying the monotone class lemma (see [10; Ch. 0, (2.1)]), we conclude that
M = B([—a,a]).

Step 2. By linearity, we extend (2.7) to the functions of the form f(z) =
Yo il (z € A;), where A; € B([—a,a).

Step 3. Let f be a bounded function with compact support. Then f can be
uniformly approximated by the functions of the form described in Step 2. Using the
same arguments as in the proof of Lemma 2.8 (Step 4), we get (2.7) for f.

Step 4. Similar arguments as in the proof of Lemma 2.8 (Step 5) show that (2.7) is
true for any locally bounded f. a

Proof of Theorem 2.2. In view of (2.4), the process (X7,Y,”; ¢t > 0) defined in
Lemma 2.8 has the same distribution as the “original” process (X[,Y;"; ¢t > 0) that
appears in (2.3). The desired result now follows from the fact that the convergence in
probability uniformly on compact intervals implies the weak convergence. O

Proof of Theorem 2.3. This theorem is proved in the same way as Theorem 2.2
(with Lemma 2.8 replaced by Lemma 2.10). O

3 Approximation of the Brownian Local Time
1. Definitions and known facts. Let (Z;; ¢ > 0) be a continuous semimartingale.

Definition 3.1. The local time of Z at a point a € R is the random process
(L{(Z); t > 0) that satisfies the equality

t
\Z, — a| = |Zy — a +/ sgn(Z, — a)dZ, + LA(Z), > 0. (3.1)
0

Formula (3.1) is called the Tanaka formula.

Remark. The value sgn0 is taken to be equal to —1. If Z is a local martingale,
then the value sgn (0 is not important since in this case

t
/ [(Z, = a)dZ, =0, > 0.
0

10



Proposition 3.2 (Ito-Tanaka formula). Let ¢ : R — R be a difference of two
convex functions. Then

o) =)+ [ vz [ L@, iz

where ¢’ denotes the left-hand derivative of ¢ and ¢" denotes the second derivative
of ¢ (this is a signed measure on R).

For the proof, see [10; Ch. VI, (1.5)].

Proposition 3.3. The process (L{(Z); t > 0) is an increasing continuous process
and the measure dL{(Z) is a.s. carried by the set {t > 0: Z; = a}.

For the proof, see [10; Ch. VI, (1.2), (1.3)].

More information on the local time as well as other equivalent definitions of this
process can be found in [10; Ch. VI], [8; Ch. 2].

2. The results. Let (&)%2; be a sequence of i.i.d. random variables with P(&, =
1) =P(& = —1) = L. Let us set

k

Xk - Zg'n k € Z+7
=1
k—1

Ly=) I(X;=0), keZ,
=0

For each n € N, we consider

1 1
Xk, Z/,n - —Lk, k € Z+

7 v

and construct the processes (X/; ¢t > 0), (L};t > 0) by linear interpolation of
(Xijmi b €Z4), (LY k € Zy).

Theorem 3.4. We have

(X7, LY > 0) =2 (By, Ly; t > 0),

n—oo

where B is a Brownian motion started at zero and L is its local time at zero.

Proof. Set
-1 if x <0,
flz)=20 if 2 =0,
1 if > 0.

For each n € N, consider

k
n 1 "
k/n = Jn iz:;f(X(in/n)fi; keZ,.

11
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WW t

Figure 2. Simulated paths of X™ and L™ (n = 2500)

Comparing this expression with the equalities
L
Pw=—> & ke,
VS

k
1 n
Z/n = = ZI(X(z—l)/n = 0)7 k € L,
VS
one can easily check that
LZ/n = |Xl?/n| - }/kn/na ke Z-l-'

Consequently,
Ly =X} -Y7, t=0.

Now, the result follows from Theorem 2.2 and the equality

t
Lt:|Bt|—/f(Bs)st, >0
0

(see (3.1)).

4 Approximations of Skew Brownian Motions

1. Definitions and known facts. Let (B;; t > 0) be a Brownian motion started at

a point By. Let p € [0,1]. Set

t
A= / (p*I(Bs > 0) + (1 — p)*I(Bs < 0))ds, t>0,
0

n=inf{s >0: A, > 1}, >0,
Mt:BTti tZ 07
Bf = @(Mt), t 2 07

where

() px if >0,
xT) =
4 (1—-p)z if 2 <0.

12

=
—_

~_~ o~~~ o~
L
= W N
—_ — — ~—

(4.5)



Definition 4.1. The process (Bf;t > 0) is called a skew Brownian motion with
parameter p started at BY.

Remarks. (i) A skew Brownian motion with parameter 1 coincides in distribution
with the modulus of a Brownian motion (see [8; §2.11]). A skew Brownian motion with
parameter % is an ordinary Brownian motion. A skew Brownian motion with parameter
0 coincides in distribution with the modulus of a Brownian motion multiplied by —1.

(i) The construction (4.1)—(4.5) is precisely Feller’s construction of a diffusion from
a Brownian motion through a time change and a space transformation with ¢ : R — R
and A, = [} (¢'(By))%ds.

(iii) There exist other possible ways of defining a skew Brownian motion. This
process may be defined as a Markov process with a given transition function (see [10;
Ch. III, (1.16)]); it may be defined as a diffusion process with a given generator (see [10;
Ch. VII, (1.23)]); it may be defined as the solution of a stochastic differential equation
with a generalized drift (see [6]). One of the most transparent ways of defining the skew
Brownian motion is based on the excursion theory. Informally, a skew Brownian motion
with parameter p is obtained from the modulus of a Brownian motion by changing the
sign of each of its excursions with probability 1 — p. a

Lemma 4.2. Let (B}; t > 0) be a skew Brownian motion with parameter p started
at a point BY.

(i) The process B has the strong Markov property.

(ii) The process BP is a semimartingale.

(iii) We have Law(|Bt|; t > 0) = Law(|By|; t > 0), where B is a Brownian motion
started at BY.

(iv) Let a < Bf < ¢ and set T,(B?) = inf{t > 0: B} = a}, T.(B?) = inf{t > 0:
BY =c}. Then
¢ 1 (Bg) — ¢ '(a)

7 (c) =97 (a)
(If p =1, we consider only a > 0; if p =10, we consider only ¢ <0.)

Proof. (i) If p =1, then B? is the modulus of a Brownian motion (see [8; §2.11]),
and this process has the strong Markov property (see [10; Ch. XI, §1]). For p € (0,1),
statement (i) follows from [10; Ch. X, (2.18)].

(ii) If p = 1, then BP is the modulus of a Brownian motion. It follows from the
Tanaka formula (3.1) that this process is a semimartingale. For p € (0, 1), the process
M given by (4.3) is a local martingale (see [10; Ch. V, (1.5)]). It follows from the
It6-Tanaka formula (Proposition 3.2) that

P{T.(B") < To(B")} =

t 2p — 1
oO1) = o) + [ (aydat,+ LE00, 0. (@)
0
Hence, ¢(M) is a semimartingale.
(iii) For p = 0,1, this statement follows from [8; §2.11]. For p € (0,1), this
statement follows from [10; Ch. XII, (2.16)].

(iv) This statement is a consequence of the following fact. Let (By; ¢ >0)

be a Brownian motion started at a point By. Let a < By < c¢. Set
T,(B) =inf{t >0: B, =a}, T.(B) = inf{t > 0: B, = c¢}. Then
. BU —a

P{T.(B) < T.(B)}

c—a
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Figure 3. A simulated path of X" (p =0.9, n = 2500)

(see [10; Ch. II, (3.8)]. O

Remark. As opposed to the case of a Brownian motion, the stochastic integral

t
/ (B = 0)dB?
0
is not equal to zero. This follows from (4.6). O

For more information on skew Brownian motions, see [1], [2], [6].

2. The results. Let (Xy; k£ € Z,) be an integer-valued Markov chain with X =0
and the transition probabilities

1 1
P =i+1| X =) =5, PRon=i-1|Xp=0)=5 if i#0,
P(Xpt1 =1] Xy =0) =p, P(Xp1=-1|Xp=0)=1-np,

where p € [0,1]. Let f:R — R? be a Borel function. For each n € N, we consider

n 1
Xk/n = ﬁXka ke Z-I—a (47)
Yvkn/'n Z f (i-1) /n /n Xéni—l)/n): k€ Z+ (48)

and construct the processes (X[;t > 0), (Y*;t > 0) by linear interpolation of
(X7 k € 2), (V)i h € ).

Theorem 4.3. If f is piecewise continuous, then

(XP, Y > 0) 2, (Bf, / £ (B7) dBi’;t20>, (49)

n—oo

where BP is a skew Brownian motion with parameter p started at zero.

Remark. If f is only locally bounded, then the conclusion of Theorem 4.3 does not
hold. In order to see this, one needs only to consider the function given by Exam-
ple 2.4. O

3. The proofs. Theorem 4.3 follows from Lemma 4.6 given below.

14



Lemma 4.4. Let (BY; t > 0) be a skew Brownian motion with parameter p € [0,1]
started at a point BY. Let a # 0 and (Hy; t > 0) be a bounded (FP")-predictable
process such that, for any t > 0, H; equals zero on the set {B} # a}. Then

t
/ H, B’ =0, t>0.
0

Proof. By the Ito-Tanaka formula,

2p—1

5 LY(M), t>0,

t
Bf:Bg+/ o (M)dM, +
0

where M is given by (4.3) and ¢ is given by (4.5). Hence,

t t 2p -1 t
/HsdBf:/ Hgo' (Mg)dM, + 5 /HdeS(M)
0 0 0

t
= / Hyo' (a)I(My = a)dMy = N;,, t>0.
0

(In the latter equality we applied Proposition 3.3). The process N is a local martingale
and

(N, = / (Hog' ()T(M, = a)2d(M),, t>0.

By the occupation times formula (see [10; Ch. VI, (1.6)]),
t
/ (M, = a)d(M), = / I(z = a)LE(M)dz =0, t>0.
0 R

Hence, N = 0. This is the desired statement. O

Lemma 4.5. Let (B}; t > 0) be a skew Brownian motion with parameter p started
at zero. Define a collection of stopping times (s n € Nk € Z,) by 70 =0,

1

Then
and L
VmeN, max |77 —— SN (4.11)
k=0,...mn n| n—oo

Proof. Since BP? is a strong Markov process (see Lemma 4.2 (i)), the sequence
(Bf]?; k € Zy) is a Markov chain. It follows from Lemma 4.2 (iv) that this Markov

chain has the same transition probabilities as (X},; k € Z.). Thus, we get (4.10).
In order to prove (4.11), let us consider a Brownian motion B started at zero and
a collection of stopping times (7}'; n € N,k € Z) given by 73" =0,

= inf{t > 771 |B,— Bpp| > L}

15



Note that we can write

n s 1

and

I JUNPUR 1

Tk+1:1nf{tZTk “Bt|_|BT,?HZ%}
As Law(|BP|; t > 0) = Law(|B,; t > 0) (see Lemma 4.2 (iii)), we get Law( ik
Z.) = Law(7}; k € Z;). Now, (4.11) follows from the equality E(7},, — 7)) =
combined with the arguments used in the proof of Lemma 2.6.

Oz~ m

Lemma 4.6. Let [ be piecewise continuous. Let (B}; t > 0) be a skew Brownian
motion with parameter p started at zero. Let (7;n € Nk € Z,) be the collection
of stopping times given by Lemma 4.5. Set X} n = Bfg and define Y™ through X"

using (4.8). Then

t
(XY 1> 0) 2 (Bf, | sz o> o).
n—oo 0

Proof. As in Lemma 2.8, it will suffice to prove the convergence

(Y ¢ > 0) (/ F(B?)dBP; t > 0) (4.12)
n—oo

for one-dimensional functions f. We will do this in several steps.
Step 1. Suppose that f(xz) = I(x > 0). Consider the processes

t
_ / HMBY, t>0, (4.13)
0

where

ZI <t <T) (B ), t>0.
It is easy to see that H;" equals f(BY) on the set { B} ¢ (—ﬁ, 0)U(0, ﬁ)} Hence, the

processes H™ tend to f(BP?) pointwise. Now, it follows from the Lebesgue dominated
convergence theorem for stochastic integrals (see [9; Ch. I, (4.40)]) that

(Y ¢ > 0) 2By </fB”dB”t>O)
n—oo

Using the equality }77’]: = YJI’? and keeping in mind that Y is linear on each [7]"_,,7}],
we get (4.12).

Step 2. Let f(z) = I(z > a), where a # 0. Let Y™ be the process defined by (4.13).
In view of Lemma 4.4, Y™ can be rewritten as

t
:/ K"dB?, t>0,
0

16



where K} = HII(BY # a). It is easy to see that K] equals f(B!) on the set
{Bf ¢ (a — ﬁ, a) U (a, a+ ﬁ)} Hence, the processes H" tend to f(BP) pointwise.
We now proceed similarly to Step 1.

Step 3. We derive (4.12) for piecewise continuous functions in the same way as in
Lemma 2.8 (Steps 2-5). O

Proof of Theorem 4.3. In view of (4.10), the process (X[, Y;"; t > 0) defined in
Lemma 4.6 has the same distribution as the “original” process (X[,Y;"; ¢t > 0) that
appears in (4.9). The desired result now follows from the fact that the convergence in
probability uniformly on compact intervals implies the weak convergence. O

5 Limit Behaviour of the “Horizontal-Vertical”
Random Walk

1. Limit behaviour. Let (&)52,; be a sequence of i.i.d. random variables with
E¢ =0, E€2=1. Let us set Xo =0, Y5 =0,

Xip+ & if Y > X,
Xk if 1/k < Xk7

Y it Y, > X,
Vi — & if Y, < X

For each n € N, we consider

1 1

— —Y,, keZ
Jn Tk +
and construct the processes (X[;t > 0), (Y*;t > 0) by linear interpolation of
(X k€ Zy), (Vi) k €Zy).

Theorem 5.1. Let B be a Brownian motion started at zero. Set

t
1
X = / I(B, <0)dB, = ;L ~ B, >0, (5.1)
0
t 1
Y = —/ I(B, > 0)dB, = 5L~ Bf, 1>0. (5.2)
0
Here, L is the local time of B at zero and B, = —(B; A0). Then
(NP Y 12 0) = (X7, Y 12 0),
n—oo

Proof. Let us consider the processes

Xp=Xr-vy, Y =XP 4V

Then
Ky = X+ 22
(k+1)/n = Sk/m T o
N N &H—l v
Y(k+1)/n =Yg — ngn k/n

17
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Figure 4. A construction of the limit process

In other words,

k
~ 1
Vi
k

~TL 1 ~TL
kn = ;fi sgn Xi 1ymy K € 2Ly

The result now follows from Theorem 2.2. O

2. Another construction of the limit process. Let us now present another
equivalent construction of the limit process (X7°,Y,>; ¢ > 0) given by Theorem 5.1.

Imagine that the line k = {x = y} is a string and there is a frame that consists of
a line [ that is orthogonal to k, a horizontal ray m and a vertical ray n. The elements
[, m, n have a common point P. The frame is not motionless, i.e. the point P, to
which [, m and n are “attached”, can slide along £.

Let (By;; t > 0) be a Brownian motion started at zero. Suppose that the point
P slides along k in such a way that P, = kL;, where k = (3,1) and (Ly;; t > 0) is
the local time of B at zero. Then [, m and n also move. We will denote them by
l;, m; and n,. Suppose that there is a point @Q; € I, given by Q; = P, + [B,, where
| = (%,—%) Let R; be the projection of Q; on m; Un; along k (if B; < 0, then
R, € my; if B, > 0, then R, € ny). The process (Ry;;t > 0) = (RY,R/;t > 0) is a
two-dimensional random process with

1 1 1
Y =-L+-B,— -|B t>
Rt 2t+2 t 2| t|’ _0’
1 1 1
Y=—L,—-B,— =|B], t>0.

We see that R* = X, RY = Y*°, where X*°, Y are given by (5.1), (5.2). Thus,
(Ry; t > 0) is the limit process given by Theorem 5.1.

Remarks. (i) It is seen from this construction that the limit process (X7°,Y,>®; ¢t > 0)
is a two-dimensional homogeneous Markov process (note that (B, L;; ¢t > 0) is the
one).

18



(ii) Let @ > 0. Consider the stopping time 7, = inf{t > 0 : (X;°,Y,>°) = (a,a)}.
Then

Ta=inf{t>0:L,=2a} 2 inf{t>0: S5, =2a} =inf{t >0: B, = 2a}.

Here, S; = max,<; By, and we applied P. Lévy’s theorem (see [10; Ch. VI, (2.3)]). The
last random variable is known to have the distribution density

()= =%, 520
Pa(T) = e, x>

¢ 2ma?

(see [10; Ch. ITI, (3.7)]). In particular, E7, = oc.

(iii) The above construction of the limit process also shows that the sample paths
of (X*°,Y*°) (in the phase space) consist of vertical and horizontal intervals. These
intervals represent the excursions of the Brownian motion B plotted against its local
time at zero (for the definition of an excursion, see [10; Ch. XII}). The length of each
(vertical or horizontal) interval shows the height of the corresponding excursion. Thus,
the paths of R yield a transparent representation of the excursion process of a Brownian
motion. a

Figure 5. A simulated path of the limit process
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