FAMILIES OF CONSISTENT PROBABILITY MEASURES

A.S. Cherny

Moscow State University,
Faculty of Mechanics and Mathematics,
Department of Probability Theory,
119992 Moscow, Russia.

E-mail: cherny@mech.math.msu.su

Abstract. This paper deals with the following problem. Suppose that $(P_t)_{t\geq 0}$ is a family of consistent probability measures defined on a filtration $(\mathcal{F}_t)_{t\geq 0}$. Does there exist a measure P on the σ -field $\bigvee_{t\geq 0} \mathcal{F}_t$ such that $P|\mathcal{F}_t = P_t$? The answer is positive for the spaces $C(\mathbb{R}_+, \mathbb{R}^d)$ and $D(\mathbb{R}_+, \mathbb{R}^d)$ endowed with the natural filtration. We prove this statement using a simple method based on the *Prokhorov criterion* of weak compactness.

Key words and phrases. Consistent probability measures, extension of measures, Skorokhod space, Prokhorov criterion.

1 Introduction

Let $(\Omega, (\mathcal{F}_t)_{t\geq 0})$ be a filtered space. Suppose that, for every $t\geq 0$, P_t is a probability measure on \mathcal{F}_t and these measures are *consistent*, i.e. $P_t|\mathcal{F}_s = P_s$ for $s\leq t$ ($P_t|\mathcal{F}_s$ denotes the restriction of P_t to \mathcal{F}_s). The question arises whether there exists a measure P on $\bigvee_{t\geq 0} \mathcal{F}_t$ such that $P|\mathcal{F}_t = P_t$ for each $t\geq 0$.

In the general case the answer to this question is negative (see Section 4).

However, in many natural cases the answer is positive. The following statement is proved in [3, Ch. V, §4].

Proposition 1. Let $(\Omega, (\mathcal{F}_n)_{n=1}^{\infty})$ be a filtered space. Suppose that

- i) for each n, there exists a Polish space X_n such that \mathcal{F}_n is isomorphic to the Borel σ -field $\mathcal{B}(X_n)$;
- ii) for any sequence $(A_n)_{n=1}^{\infty}$ such that A_n is an atom of \mathcal{F}_n $(n \in \mathbb{N})$, one has: $\bigcap_n A_n \neq \emptyset$.

Then any sequence $(P_n)_{n=1}^{\infty}$ of consistent probability measures on (\mathcal{F}_n) can be extended to a measure on $\bigvee_n \mathcal{F}_n$.

The problem under consideration usually arises for the path spaces $C(\mathbb{R}_+, \mathbb{R}^d)$ and $D(\mathbb{R}_+, \mathbb{R}^d)$ rather than for the abstract measurable spaces. The following statement can easily be derived from Proposition 1.

Theorem 1. Let $C(\mathbb{R}_+, \mathbb{R}^d)$ (respectively, $D(\mathbb{R}_+, \mathbb{R}^d)$) be the space of continuous (respectively, $c\`{a}dl\grave{a}g$) functions $\mathbb{R}_+ \to \mathbb{R}^d$. Let $(X_t)_{t\geq 0}$ be the coordinate process and $\mathcal{F}_t = \sigma(X_s; s \leq t)$ be the natural filtration. Suppose that (P_t) is a family of consistent probability measures on (\mathcal{F}_t) . Then there exists a unique measure P on $\mathcal{F} = \sigma(X_s; s \geq 0)$ such that $\mathsf{P}|\mathcal{F}_t = \mathsf{P}_t$ for any $t \geq 0$.

The proof of this statement for the space $C(\mathbb{R}_+, \mathbb{R}^d)$ can also be found in [5, (1.3.5)].

The proofs in [3] and [5] are based on rather complicated arguments from the measure theory. In this paper (Section 2), we give a simple proof of Theorem 1 based on the *Prokhorov* criterion of weak compactness. In Section 3, we present the application of the obtained results. Section 4 contains an example which shows that, for an abstract probability space endowed with a filtration (\mathcal{F}_t) , a family of consistent probability measures on (\mathcal{F}_t) may not be extended to a measure on $\bigvee_{t>0} \mathcal{F}_t$.

2 The Proof of Theorem 1

Proof. We will prove the statement for the space $D(\mathbb{R}_+, \mathbb{R}^d)$. For each $n \in \mathbb{N}$, the map

$$F_n: D(\mathbb{R}_+, \mathbb{R}^d) \ni X \longmapsto Y \in D(\mathbb{R}_+, \mathbb{R}^d)$$

defined as $Y_t = X_{t \wedge n}$ is $\mathcal{F}_n | \mathcal{F}$ -measurable. Set $Q_n = P_n \circ F_n^{-1}$ (i.e. Q_n is a measure on \mathcal{F}). Note that \mathcal{F} coincides with the Borel σ -field $\mathcal{B}(D(\mathbb{R}_+, \mathbb{R}^d))$.

We will prove that the sequence $(Q_n)_{n=1}^{\infty}$ is *tight*. The necessary and sufficient condition of tightness is as follows (see [2, Ch. VI, §3b]): for any $N \in \mathbb{N}$, $\varepsilon > 0$ and $\eta > 0$, there exist $n_0 \in \mathbb{N}$, K > 0 and $\theta > 0$ such that

$$n \ge n_0 \implies \mathsf{Q}_n \left(\sup_{t \le N} |X_t| < K \right) > 1 - \varepsilon,$$
 (1)

$$n \ge n_0 \implies Q_n(\omega'_N(X,\theta) < \eta) > 1 - \varepsilon,$$
 (2)

where $\omega'_N(X,\theta)$ is the following modulus of "continuity":

$$\omega'_{N}(X, \theta) = \inf \{ \max_{i \le m} \sup_{t_{i-1} \le s \le r < t_{i}} |X_{r} - X_{s}| :$$

$$0 = t_{0} < \ldots < t_{m} = N, \inf_{i < m} (t_{i} - t_{i-1}) \ge \theta \}.$$

Let us fix $N \in \mathbb{N}$, $\varepsilon > 0$ and $\eta > 0$. The one-point set $\{Q_N\}$ is tight. Hence, there exist K > 0 and $\theta > 0$ such that

$$Q_N\left(\sup_{t\leq N}|X_t|< K\right) > 1-\varepsilon,\tag{3}$$

$$Q_N(\omega_N'(X,\theta) < \eta) > 1 - \varepsilon. \tag{4}$$

It follows from the condition $P_n|\mathcal{F}_N = P_N \ (n \geq N)$ that $Q_n|\mathcal{F}_N = Q_N|\mathcal{F}_N \ (n \geq N)$. Therefore, (3), (4) yield (1), (2) with $n_0 = N$.

Thus, the sequence $(Q_n)_{n=1}^{\infty}$ is tight. The *Prokhorov criterion* implies that there exist a sequence $n_k \to \infty$ and a measure P on \mathcal{F} such that Q_{n_k} converges weakly to P as $k \to \infty$. We state that $P|\mathcal{F}_t = P_t$ for all $t \ge 0$. In order to prove this assertion, let us fix $M \in \mathbb{N}$ and consider the map

$$G:D(\mathbb{R}_+,\mathbb{R}^d)\ni X\longmapsto Y\in D([0,M],\mathbb{R}^d)$$

defined as $Y_t = X_t$ $(t \leq M)$. Let \widetilde{k} denote the minimal k satisfying the inequality $n_k \geq M$. Set

$$\mathsf{R} = \mathsf{P} \circ G^{-1}, \quad \mathsf{R}_k = \mathsf{Q}_{n_k} \circ G^{-1} \quad (k \geq \widetilde{k}).$$

Obviously, $\mathsf{R}_k = \mathsf{R}_{\widetilde{k}}$ for $k \geq \widetilde{k}$. The map G is continuous when $D(\mathbb{R}_+, \mathbb{R}^d)$ and $D([0, M], \mathbb{R}^d)$ are endowed with the *Skorokhod topology*. Therefore, R_k converges weakly to R as $k \to \infty$. Since $\mathsf{R}_k = \mathsf{R}_{\widetilde{k}}$ for $k \geq \widetilde{k}$, we conclude that $\mathsf{R} = \mathsf{R}_{\widetilde{k}}$. Hence, the measures P and $\mathsf{Q}_{n_{\widetilde{k}}}$ coincide on the σ -field $G^{-1}(\mathcal{B}(D([0, M], \mathbb{R}^d))) = \mathcal{F}_M$. Due to the inequality $n_{\widetilde{k}} \geq M$, we have

$$\mathsf{P}|\mathcal{F}_M = \mathsf{Q}_{n_{\widetilde{k}}}|\mathcal{F}_M = \mathsf{Q}_M|\mathcal{F}_M = \mathsf{P}_M.$$

As M is arbitrary, we deduce that $P|\mathcal{F}_t = P_t$ for each $t \geq 0$.

The uniqueness of P follows from the equality $\mathcal{F} = \bigvee_{t>0} \mathcal{F}_t$.

The proof of the theorem for the space $C(\mathbb{R}_+, \mathbb{R}^d)$ is the same except that in formulas (1)–(4) one should replace $\omega'_N(X, \theta)$ by the following modulus of continuity:

$$\omega_N(X, \theta) = \sup\{|X_r - X_s| : 0 \le s \le r \le N, |r - s| \le \theta\}.$$

Remark. Theorem 1 remains valid if the filtration (\mathcal{F}_t) is replaced by its right modification $\mathcal{G}_t = \bigcap_{\varepsilon > 0} \mathcal{F}_{t+\varepsilon}$. In order to prove this statement, we set $P_t = P_t | \mathcal{F}_t$, use Theorem 1 to construct a measure P on $\bigvee_{t \geq 0} \mathcal{F}_t$ such that $P | \mathcal{F}_t = P_t \ (t \geq 0)$ and then apply the obvious equalities:

$$P|\mathcal{G}_t = (P|\mathcal{F}_{t+1})|\mathcal{G}_t = \widetilde{P}_{t+1}|\mathcal{G}_t = (P_{t+1}|\mathcal{F}_{t+1})|\mathcal{G}_t = P_{t+1}|\mathcal{G}_t = P_t.$$

3 The Application of the Obtained Results

In this section, we will consider the following problem.

Let $(B_t; t \ge 0)$ be a Brownian motion on a filtered probability space $(\Omega, \mathcal{F}, (\mathcal{F}_t), \mathsf{P})$ and τ be a (\mathcal{F}_t) -stopping time. We will present a necessary and sufficient condition for the process

$$M_t = \exp\left\{B_{t\wedge\tau} - \frac{1}{2} \ t \wedge \tau\right\}, \quad t \ge 0$$

to be a uniformly integrable martingale.

Obviously, M is uniformly integrable if and only if

$$\mathsf{E}_{\mathsf{P}} \exp\left\{B_{\tau} - \frac{1}{2}\tau\right\} = 1,\tag{5}$$

where

$$\exp\left\{B_{\tau} - \frac{1}{2}\tau\right\} = 0\tag{6}$$

on the set $\{\tau = \infty\}$. Let us consider the two-dimensional process $(X_t; t \ge 0)$ of the form:

$$X_t^1 = B_t, \quad X_t^2 = (t - \tau)^+.$$

Then (5) is equivalent to:

$$\mathsf{E}_{\mathsf{Q}} \exp \left\{ X_T^1 - \frac{1}{2}T \right\} = 1,\tag{7}$$

where Q is the distribution of the process X (Q is a measure on $C(\mathbb{R}_+, \mathbb{R}^2)$) and $T = \inf\{t \ge 0 : X_t^2 > 0\}$.

In order to investigate (7), we set $\mathcal{G}_t = \bigcap_{\varepsilon>0} \sigma(X_s; s \leq t + \varepsilon)$, $Q_t = Q|\mathcal{G}_t$ and consider the measures $(\widetilde{Q}_t)_{t>0}$ defined by

$$\frac{d\widetilde{\mathsf{Q}}_t}{d\mathsf{Q}_t} = \exp\Big\{X_t^1 - \frac{1}{2}t\Big\}.$$

Obviously, $(\widetilde{Q}_t)_{t\geq 0}$ is a consistent family of probability measures. By the Remark following the proof of Theorem 1, there exists a measure \widetilde{Q} on $\mathcal{F} = \sigma(X_s; s \geq 0)$ such that $\widetilde{Q}|\mathcal{G}_t = \widetilde{Q}_t$ $(t \geq 0)$. Now, set $Q_T = Q|\mathcal{G}_T$, $\widetilde{Q}_T = \widetilde{Q}|\mathcal{G}_T$. By [2, Ch. III, §3a],

$$\frac{d\widetilde{\mathsf{Q}}_T|\{T<\infty\}}{d\mathsf{Q}_T|\{T<\infty\}} = \exp\Bigl\{X_T^1 - \frac{1}{2}T\Bigr\}.$$

Therefore,

$$\widetilde{\mathsf{Q}}\{T<\infty\} = \mathsf{E}_{\mathsf{Q}}\Big[I(T<\infty)\,\exp\!\Big\{X_T^1 - \frac{1}{2}T\Big\}\Big] = \mathsf{E}_{\mathsf{Q}}\,\exp\!\Big\{X_T^1 - \frac{1}{2}T\Big\}.$$

Here, we use the fact that $\exp\{X_T^1 - \frac{1}{2}T\} = 0$ on the set $\{T = \infty\}$ (see (6)). Thus, (7) is equivalent to the following condition:

$$\widetilde{\mathsf{Q}}\{T < \infty\} = 1. \tag{8}$$

It is usually hard to verify condition (8), except for some special cases. For example, suppose that $\tau = \inf\{t \geq 0 : B_t \geq \varphi(t)\}$, where $\varphi \in C(\mathbb{R}_+)$, $\varphi(0) > 0$. In that case the distribution of the process $(X_t^1; t \geq 0)$ under $\widetilde{\mathbb{Q}}$ coincides with the distribution of the Brownian motion with the unit drift. Therefore, $\widetilde{\mathbb{Q}}\{T < \infty\} = 1$ if and only if the function $\varphi(t) - t$ is a lower function of Brownian motion.

4 An Example

Theorem 1 may not be valid if (\mathcal{F}_t) is replaced by another filtration. The following example is taken from [1].

Example 1. Let $(\mathcal{G}_t)_{t\in[0,1]}$ be the filtration on C([0,1]) defined as $\mathcal{G}_t = \sigma(X_s; s \leq t) \vee \sigma(X_1)$, where $X = (X_t)_{t\in[0,1]}$ is the coordinate process. Let P be the Wiener measure on $\mathcal{G} = \mathcal{G}_1$. It is well known that under P, the coordinate process admits the representation

$$X_{t} = \int_{0}^{t} \frac{X_{1} - X_{s}}{1 - s} ds + B_{t} = \int_{0}^{t} \alpha_{s} ds + B_{t},$$

where B is (\mathcal{G}_t) -Brownian motion. Let us consider the family $(Q_t)_{t\in[0,1)}$ defined as

$$\frac{d\mathsf{Q}_t}{d\mathsf{P}_t} = \exp\Bigl\{-\int_0^t \alpha_s \, dX_s + \frac{1}{2} \int_0^t \alpha_s^2 \, ds\Bigr\},\,$$

where $P_t = P|\mathcal{G}_t$. Then $(Q_t)_{t \in [0,1)}$ is a family of consistent probability measures on $(\mathcal{G}_t)_{t \in [0,1)}$. Suppose that there exists a measure Q on \mathcal{G} such that $Q|\mathcal{G}_t = Q_t$ for all $t \in [0,1)$. By Girsanov's theorem,

$$\operatorname{Law}(X_s; s < t | Q_t) = \operatorname{Law}(B_s; s < t) = \operatorname{Law}(X_s; s < t | P_t)$$

for each t < 1. Hence,

$$\operatorname{Law}(X_s; s < 1|Q) = \operatorname{Law}(X_s; s < 1|P).$$

Therefore,

$$Q|\sigma(X_s; s < 1) = P|\sigma(X_s; s < 1).$$

As $\sigma(X_s; s \leq 1) = \mathcal{G}$, we conclude that Q = P. This leads to a contradiction since

$$Q|\mathcal{G}_t = Q_t \neq P_t = P|\mathcal{G}_t$$
.

Thus, the family $(Q_t)_{t\in[0,1)}$ can not be extended to the σ -field \mathcal{G} .

Remark. The book [4, Ch. II, §3] contains a different example. It shows that, for a general filtered space, the family of consistent probability measures cannot be extended to $\bigvee_{t>0} \mathcal{F}_t$.

Acknowledgement. I am grateful to professor A.N. Shiryaev for useful discussions and recommendations. I express my thanks to professor H.-J. Engelbert for his important comments and suggestions.

References

- [1] Föllmer H., Imkeller P. Anticipation cancelled by a Girsanov transformation: a paradox on Wiener space. Annales de l'Institut Henri Poincaré, Probabilités et Statistiques, V. 29 (1993), No. 4, p. 569–586.
- [2] Jacod J., Shiryaev A.N. Limit theorems for random processes. Springer-Verlag, 1987.
- [3] Parthasarathy K.R. Probability measures on metric spaces. Academic Press, New York, London, 1967.
- [4] Shiryaev A.N. Probability. Springer-Verlag, 1996.
- [5] Stroock D.W., Varadhan S.R.S. Multidimensional diffusion processes. Springer-Verlag, 1979.