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Abstract. We prove that for any Brownian moving average

Xt =

∫ t

−∞

(f(s − t) − f(s))dBs, t ≥ 0,

the process S = eX satisfies the conditional full support condition introduced by
Guasoni, Rásonyi, and Schachermayer [4]. This, combined with the results of [4],
shows that S admits an ε-consistent price system for any ε > 0 and also provides
the form of asymptotic superreplication prices for options of the form g(ST ).
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1 Introduction

1. Overview. It is well known (see Soner, Shreve, and Cvitanić [12], Leventhal and
Skorokhod [9], Cherny [2]) that in the Black-Scholes-Merton model with proportional
transaction costs the superreplication price of a European call option converges to its
trivial upper bound as the transaction cost coefficient tends to zero. The same is true for
any European type contingent claim in this model (see Cvitanić, Pham, and Touzi [3]).
In the recent paper [4], Guasoni, Rásonyi, and Schachermayer proved that the same result
holds for a much wider class of models satisfying only a minor geometric condition termed
conditional full support and denoted CFS for brevity.

This condition is as follows. We consider a filtered probability space
(Ω,F , (Ft)t∈[0,T ],P) and a continuous strictly positive (Ft)-adapted process (St)t∈[0,T ]

meaning the discounted price of an asset. The CFS condition requires that, for any
t ∈ [0, T ],

supp Law(Su; t ≤ u ≤ T | Ft) = C+
St

[t, T ] a.s.,

where C+
x [t, T ] is the space of continuous functions f : [t, T ] → (0,∞) with f(t) = x and

“supp” denotes the support (the conditional distribution here is viewed as a measure on
the space C+[t, T ] of continuous strictly positive functions on [t, T ]).

Moreover, as shown in [4], under the CFS condition, for any ε > 0, there exists a

measure P̃ ∼ P and an (Ft, P̃)-martingale M such that (1 + ε)−1S ≤ M ≤ (1 + ε)S.

1This paper would have not been written without the advise of Stanislav Molchanov, who suggested
to employ the Titchmarsh convolution theorem, which is at the heart of the proof of the main theorem
of the paper. I express my thanks to Martin Schweizer for having attracted my attention to the paper
by Guasoni, Rásonyi, and Schachermayer. I am thankful to Miklos Rásonyi for the careful reading of the
manuscript and important remarks.
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The pair (P̃,M) is known as an ε-consistent price system. Thus, CFS is a completely
new geometric condition ensuring the existence of consistent price systems in models with
transaction costs; in contrast, all the earlier papers (see, for example, Jouini and Kallal [6],
Cherny [2]) derive the existence of consistent price systems from various sorts of the No
Arbitrage condition.

Let us also mention the recent paper of Kabanov and Stricker [8] that extends the
results of [4] to the multiasset framework introduced by Kabanov [7].

2. Goal of the paper. As motivated by the above discussion, the CFS condition is
interesting and important. The paper [4] provides several examples of processes satisfying
this condition. One of them is S = eX , where X is a Fractional Brownian motion (FBM).
It is well known (see Mandelbrot and Van Ness [11]) that FBM is a Brownian moving
average, i.e. it can be represented as

Xt =

∫ t

−∞

(f(s− t) − f(s))dBs, t ≥ 0 (1.1)

with a certain function f : R → R such that f = 0 on R+ and
∫ t

−∞
(f(s−t)−f(s))2ds <∞

for any t ≥ 0. Let us remark that the class of moving averages includes processes that are,
in a sense, more convenient for financial modelling than FBM: for example, FBM is not a
semimartingale, while a moving average is a semimartingale provided that f is absolutely
continuous and its derivative is square integrable on (−∞, 0] (see Cheridito [1]).

The main result of the paper is

Theorem 1.1. Let X be a continuous process of the form (1.1), where f is not zero on

a set of positive Lebesgue measure. Then the process S = eX satisfies the CFS condition

with respect to its natural filtration.2

We also consider the CFS condition for a more general class of exponents of Gaussian
processes. In the discrete time it is easy to see that the CFS condition (appropriately
redefined for the discrete time case) is satisfied provided that S = eX , where X is a
Gaussian process such that Var(Xt − Xs | Xu; u ≤ s) > 0 for any s < t (by Var we
denote the variance). This might seem a bit surprising, but in the continuous time the
corresponding result does not hold: see Example 3.1.

2 Proof of Theorem 1.1.

Let T > 0 and let f ∈ L2[−T, 0]. For g ∈ L2[0, T ], we denote by f ∗ g the convolution
of f and g restricted to [0, T ], i.e. the function

(f ∗ g)(t) =

∫ t

0

f(s− t)g(s)ds, t ∈ [0, T ].

We denote by C0[0, T ] the space of continuous functions [0, T ] → R vanishing at zero
endowed with the standard sup norm.

2Obviously, a process eX satisfies the CFS condition if and only if X itself satisfies the variant of this
condition for real-valued processes: for any t ≤ T ,

supp Law(Xu; t ≤ u ≤ T | Ft) = CXt
[t, T ] a.s.,

where Cx[t, T ] is the space of continuous functions f : [t, T ] → R with f(t) = x.
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Lemma 2.1. Let f ∈ L2[−T, 0] satisfy the condition
∫ 0

−ε
|f(t)|dt > 0 for any ε > 0.

Then the space {f ∗ g : g ∈ L2[0, T ]} is dense in C0[0, T ].

Proof. If g is absolutely continuous with a square integrable derivative and g(0) = 0,
then (f ∗ g)′ = f ∗ g′. Thus, if a function f ∗ g approximates a function h ∈ L2[0, T ]
in the L2-sense, then the function f ∗ G, where G(t) =

∫ t

0
g(s)ds, approximates the

function H(t) =
∫ t

0
h(s)ds in the C0[0, T ]-sense. So, it is sufficient to prove that the space

{f ∗ g : g ∈ L2[0, T ]} is dense in L2[0, T ].
Suppose that this is not true. Then there exists a function h ∈ L2[0, T ] not identically

equal to zero such that

∫ T

0

(f ∗ g)(t)h(t)dt = 0 ∀g ∈ L2[0, T ].

This means that

0 =

∫ T

0

∫ t

0

f(s− t)g(s)h(t)dsdt =

∫ T

0

∫ T

s

f(s− t)g(s)h(t)dtds ∀g ∈ L2[0, T ],

which, in turn, is equivalent to the property

∫ T

s

f(s− t)h(t)dt = 0, ∀s ∈ [0, T ].

But this is impossible due to the Titchmarsh convolution theorem (see [13] for the original
proof and [5; Th. 4.3.3], [10; Lect. 16], [14; Ch. VI] for more proofs). The obtained
contradiction yields the desired result. 2

Proof of Theorem 1.1. Let a ∈ (−∞, 0] be the number such that f = 0 a.e. with
respect to the Lebesgue measure on [a, 0] and

∫ a

a−ε
|f(x)|dx > 0 for any ε > 0. We can

assume that a = 0. The case a < 0 is reduced to this one by considering the new Brownian
motion B̃t = Bt−a −B−a and the new function f̃(x) = f(x− a).

We have to prove that, for any t ∈ [0, T ],

supp Law(Xu −Xt; t ≤ u ≤ T | Ft) = C0[t, T ] a.s.,

where C0[t, T ] is the space of continuous functions f : [t, T ] → R with f(t) = 0 and
Ft = σ(Xs; s ≤ t). Obviously, it is sufficient to prove the above property with Ft replaced
by the larger filtration Gt = σ(Bs : −∞ < s ≤ t). With this substitution, it is obviously
sufficient to check the property only for t = 0. We then have

Law(Xu; 0 ≤ u ≤ T | G0)(ω)

= Law

(∫ u

0

f(v − u)dBv +

∫ 0

−∞

(f(v − u) − f(v))dBv; 0 ≤ u ≤ T

∣∣∣∣G0

)
(ω)

= Law

(∫ u

0

f(v − u)dBv + ϕ(u, ω); 0 ≤ u ≤ T

)
,

where ϕ(·, ω) is the path of the process Y =
∫ 0

−∞
(f(v − ·) − f(v))dBv corresponding to

the elementary outcome ω.
Now, it is sufficient to prove that

supp Law

(∫ u

0

f(v − u)dBv; u ≤ T

)
= C0[0, T ]. (2.1)
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It follows from the Girsanov theorem that, for any g ∈ L2[0, T ],

Law

(∫ u

0

f(v − u)dBv; u ≤ T

)
∼ Law

(∫ u

0

f(v − u)dBv +

∫ u

0

f(v − u)g(v)dv; u ≤ T

)
.

Hence, if a function ψ belongs to the left-hand side of (2.1), then the same is true for ψ+∫
·

0
f(v− ·)g(v)dv. Using now the non-emptiness of the support and recalling Lemma 2.1,

we obtain (2.1), which completes the proof. 2

3 Example

Let (Xn)n=0,...,N be a Gaussian random sequence such that

Var(Xn −Xn−1 | Xi; i ≤ n− 1) > 0 ∀n = 1, . . . , N. (3.1)

Using the induction in m, it is then easy to see that X satisfies the discrete-time version
of the CFS condition:

supp Law(Xi : i = n+ 1, . . . , m | Xi : i = 0, . . . , n) = R
m−n, ∀0 ≤ n < m ≤ N. (3.2)

Now, for the price process S = eX , the discrete-time version of the Guasoni-Rásonyi-
Schachermayer result (the proof is much easier in this case) now provides the existence of
an ε-consistent price system for any ε > 0 as well as the triviality of bounds for European
options on S.

Let us remark that (3.2) obviously implies (3.1), so that the latter property serves as
the criterion for the CFS for discrete-time Gaussian processes.

Surprisingly enough, in continuous time such a simple criterion does not hold, as shown
by the next example.

Example 3.1. Let B be a Brownian motion. For n ∈ Z+, denote an = 1−2−n and let

Xn
t = bn

∫ t

0

I(an ≤ s ≤ an+1)dBs

+ bn22n+3

∫ 1

an

(Bs∧an+1
− Ban

)ds

∫ t

0

I(s ≥ an+1)ds, t ∈ [0, 1].

The constants bn are strictly positive and decrease to zero fast enough to ensure that
∞∑

n=0

sup
t∈[0,1]

|Xn
t | <∞ a.s.

Then the process

Xt =

∞∑

n=0

Xn
t , t ∈ [0, 1]

is continuous and Gaussian. For any 0 ≤ s < t ≤ 1, the difference Xt − Xs can be
represented as ξ1 + ξ2, where ξ1 is σ(Xu; u ≤ s)-measurable and ξ2 is non-degenerate and
depends on the increments of B after time s. Hence,

Var(Xt −Xs | Xu; u ≤ s) > 0 ∀0 ≤ s < t ≤ 1.

But on the other hand,
∫ 1

0

Xtdt =
∞∑

n=0

∫ 1

0

Xn
t dt =

∞∑

n=0

bn

∫ 1

an

(Bs∧an+1
− Ban

)ds

[
1 + 22n+3

∫ 1

an+1

(s− an+1)ds

]
= 0,

so that the CFS condition is violated for X already for t = 0.

4



References

[1] P. Cheredito. Regularizing fractional Brownian motion with a view towards stock
price modelling. Ph.D. thesis, ETH Zurich, 2001.

[2] A.S. Cherny. General arbitrage pricing model: transaction costs. To appear in Lec-
ture Notes in Mathematics, 2007.
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