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Abstract. We study the convergence of the Lebesgue integrals for the pro-
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tions.
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1 Introduction

1. Let us first introduce some notions. Consider the stochastic differential equation

t
Zt:ZU+6t+2/ V' |Zs| dBs, (1.1)
0

where zg > 0, 6 > 0 and (By, t > 0) is the standard linear Brownian motion. This
equation is known to have the unique positive strong solution (see [14, ch. IX, Theo-
rem 3.5]). The process p, = /7, is called the J-dimensional Bessel process started at
po = \/Zo. For more information about Bessel processes, see [3], [12] and [14].

If 6 > 1, the §-dimensional Bessel process satisfies the following stochastic differ-
ential equation:

bo—1
pt:pg+/ 5 ds + By. (1.2)
0

S

The §-dimensional Bessel process is a reqular continuous strong Markov process
with the scale function

—z¥0 i > 2,
s(r) =< 2Inx if 6 =2, (1.3)
20 if 0<0<2.



The speed measure of the d-dimensional Bessel process has the following density with
respect to the Lebesgue measure

(6/2 17"t if §> 2
x if §=2, (1.4)
(1-0/2)7'27"  if0<éd<2

For the definition of the regular Markov process, the scale function and the speed
measure, see [14, ch. VII, section 3]. The formulas (1.3) and (1.4) can be found in [14,
ch. XI, section 1].

It follows from the explicit form of the scale function that

§>2 = P{Vt>0, p, >0} =1, (1.5)
0<0<2 =P{3t>0:p,=0}=1. (1.6)
The point = {0} is an entrance boundary if 6 > 2, a reflecting boundary if 0 < § < 2,

and an absorbing point if § = 0.
The Bessel process is recurrent for 0 < § < 2 and is transient for § > 2:

0>2 = ltlim pr =00 as., (1.7)
—00
§=2 =V >0, P{IH>0:p =2z} =1, (1.8)

0<d6<2 =Vz>0, P{3t>0:p=2}=1.

2. We will now recall some properties of the Brownian local times. The proofs
can be found, for example, in [14, ch. VI, section 1]. Let B; be the Brownian motion
started at By € R. The local time of B; at a point x € R is the process LY such that

¢
1
(B, — 2)~ = (By — 2" —/ 1(B, < #) dB, + S I, (1.10)
0
where 2~ = —(2 A 0). Equality (1.10) is called Tanaka’s formula.

There exists a bicontinuous modification of the process (LY, x € R ¢ > 0). In what
follows, we will always deal with this modification.
For any positive Borel function h and any stopping time 7', we have

/OT h(B,) ds ™= /Rh(x) L2 da. (1.11)

For any a € R, the measure dL{ is a.s. carried by the set {¢t: B; = a}. This, in
view of the continuity of Lj in z, implies that, for a < By < b,

P{Ve ¢ [a,b], LT, mn,m =0} =1, (1.12)

where T,.(B) =inf{s > 0: By =c} (c € R).
The local time of the Brownian motion started at By € R has the following prop-
erty:
P{ve >0, L >0}=1. (1.13)

3. Before proceeding to the results of this paper, we will formulate the Engelbert-
Schmidt Zero-One law. For the proof, see [5] (and also [11, ch. 3, Proposition 6.27]).
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Proposition 1.1. Let (B, t > 0) be the Brownian motion and f be a positive
Borel function. The following assertions are equivalent:

a) P{Vt >0, [} f(B,)ds < oo} > 0;

b) P{Vt >0, [ f(B,)ds < o0} =1;

¢) f is locally integrable.

In this paper, we prove the similar statement for Bessel processes (Corollary 2.3).
We present a proof of even a stronger assertion (Theorem 2.2). This theorem states
that there exists a stopping time ¢ < oo such that

P{Vt<§, /Utf(ps)ds<oo} —1, (1.14)
P{Elt>§:/0tf(ps)ds<oo} ~0. (1.15)

Moreover, & = T)(p) A T,(p). Here, | and r satisfy the inequalities —oo < [ < py <
r < 400 and are easily determined by the function f.
It is not clear from (1.14) and (1.15) whether the integral

¢
/0 F(ps) ds. (1.16)

converges or not. The answer to this problem is given by Theorem 2.5. The convergence
of the integral

| steas (1.17

is treated in Theorems 2.6 and 2.7.

Some of the obtained results are already known. The convergence of the Lebesgue
integrals for the functions f(p;) is studied in [8]. The authors of that paper prove the
Zero—One law for the case 6 > 2, py > 0. The case § > 2, py = 0 was considered
in [13], [16]. The case 0 < 6 < 2 has not previously been investigated.

The convergence of (1.17) was studied in [8], [16] for the case § > 2.

The convergence of integral (1.16) has not previously been considered.

The similar problems were investigated for the processes other than the Bessel
processes. Thus, the papers [7], [16] deal with (some) local martingales and the paper [9]
treats the Brownian motion with a drift.

The main results of this paper are formulated in Section 2. The proofs are given
in Section 3. In Section 4, the obtained results are applied to prove that two Bessel
processes of different dimensions have singular distributions. It follows from [15] that
the distributions of two Bessel processes of dimensions 1 > ¢ > 2 started at zero are
singular on the o-field Foy = (.., 0(X,, s < e). We prove this assertion with another
method employing no restriction 6 > 2. We also prove the singularity of distributions
on the o-field Fo, = 0(X,, s > 0) for two Bessel processes of different dimensions,
started at py > 0.



2 Main Results

This section contains the main theorems and the corollaries.

Definition 2.1. A positive Borel function g on [0,00) is locally integrable at a
point a > 0 if there exists € > 0 such that

a+e
/ g(x) dzx < oo.
(a—e)VO0
The set of all points at which g is integrable is denoted by C,. This is an open subset
of [0,00).
We will now proceed to one of the main results of this paper.

Theorem 2.2. Let p; be the §-dimensional Bessel process (6 > 0) started at py >
0 (if § =0, then py > 0). Let f be a positive Borel function on [0,00). Set

x f(x) if 6> 2,
z(lnz|Vv1) flx) if 6=2,

gle) = 27t f(2) if 0<0<2,
x f(x) if 6=0.

Then, for the stopping time & = inf{s > 0: p; ¢ C,}, we have

P{Vt<§, /tf(ps)ds<oo}:1,
0

P{Elt>§:/tf(ps)ds<oo}20.
0

Remarks. (i) The paper [6, Lemma 1] contains the similar statement for the Brow-
nian motion.

(ii) It is obvious that

where
r=sup{z > po:x € Cy}, (2.2)
l=inf{z < py:2€CyU(—00,0)}. (2.3)

In particular, if C; D [0, po|, then [ = —oo, and therefore, T;(p) = oo a.s. (since the
process p; is positive). Here, | can be assigned any strictly negative value but not zero
since it may happen that P{7T,(p) < oo} > 0. O

Corollary 2.3. (i) Suppose that 6 > 2 and py > 0. The following assertions are
equwalent
P{Vt>0 fo (ps ds<oo}—1
b) [ is locally integrable on (0,00), i.e. Cy D (0,00).
(11) Let 0 < 6 <2 or pg=0. The following assertions are equivalent:
a) P{Vt >0, fo (ps) ds < o0} > 0;
P{Vt>0 fo (ps)ds < oo} =1;
c) g is locally integrable on [0,00), i.e. Cy=[0,00).
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Proof. (i) In view of (1.5), the conditions 6 > 2, py > 0 imply that
P{Vt>0, p >0} = 1. Then it follows from Theorem 2.2 that the assertion a) is
equivalent to the local integrability of g on (0,0c). This, in turn, is equivalent to the
local integrability of f on (0, 00).

(ii) From (1.7)—(1.9) and the conditions 0 < § < 2 or py = 0, we get that Vz >0,
P{3t>0:p, =2} =1. Applying Theorem 2.2, one completes the proof. O

Corollary 2.4. Suppose that 6 >0, po =0 and d € R. Then
t
d>—(2AN0) :>P{Vt>0, / pfds<oo} =1,
0
d<—(2AN0) :>P{\‘/5>0, / p‘sids:oo} =1
0

It is not clear from Theorem 2.2 whether integral (1.16) converges or not. Taking
(1.14) and (2.1) into account, we see that, in order to investigate (1.16), one should
study the convergence of integrals

Ti(p)
/ f(ps)ds, >0
Ti(p)—¢
on the set {T;(p) < oc} and the convergence of integrals
TT(P)
/ f(ps)ds, €>0
Tr(p)—e

on the set {T,(p) < co}. Such integrals are considered in the following theorem.
Theorem 2.5. Suppose that 6 >0, py >0, v> 0 and v # py. Set
9(x) = |z =~ I(x € [, po]) f ().

Here, [v, po] denotes the closed interval with the endpoints v and py (so that v may
be greater than po). If v € Cy, then

P<{T7 <oc}n {35 >0 /TT:(:;f(ps) ds < oo}) =P{T, <oc}. (24)
If v ¢ C,, then
P({T7 < oo} N {Ve >0: /TTZ(:L f(ps)ds = oo}) =P{T, < oc}. (2.5)

We can apply Theorem 2.5 to study the convergence of (1.16) on the set {£ < oo}.
The following two theorems are related to the convergence of (1.17).



Theorem 2.6. (i) Suppose that § > 2 and py > 0. Then

[Taswin <o = p(te=on { [ s ds < oo} ) =Ple=ox). (26)

PO

/Ooxf(x)dx:oo — /Oof(ps)dS:OO a.s. (2.7)
Po 0
(i) If 6 > 2 and py =0, then
/Ooarf(x)dz<oo = /Oof(ps)ds<oo a.s., (2.8)
0 0
/ z f(x)dr = o0 :>/ f(ps)ds =00 a.s. (2.9)
0 0

Remark. The situation may occur where P{¢{ < oo} > 0 and P{{ = oo} > 0.
This is possible if 6 > 2, py > 0 and f is locally integrable on [pg, c0) but is not
locally integrable on (0, pg). In that event, integral (1.17) diverges a.s. on the set
{€ < oo}. Its convergence on the set {{ = oo} depends on the convergence of the
integral fpzo_oxf(z) dx. O

The situation is completely different if 0 < § < 2.

Theorem 2.7. If 0 < d <2 and py > 0, then

/oof(a:)dx>0 = /oof(ps)ds:oo a.s.
0 0

The following statement is a consequence of Theorem 2.6.

Corollary 2.8. Suppose that 6 > 2, po >0 and d € R. Then

o.¢]
d<—2:>/ plds < oo a.s.,
0

d2—2:>/ plds =00 a.s.
0

3 The Proofs

We will first prove a few lemmas.

Lemma 3.1. Suppose that 6 # 2 and (By, t > 0) is the Brownian motion started
at g > 0. Set

A= (2-0)", o(z) = N2 a2 I(z > 0),

t
A = / o(Bs) ds, 7, = inf{s > 0: A; > t}.
0

i) Suppose that 6 > 2 and 9 > 0 or 0 < §d < 2 and xqg > 0. Then the process
(i) Supp 0 0 p
B,,, t > 0) has the same law as (p?~°, t > 0). Here, p; is the 6-dimensional Bessel
t t
process started at py = xy.
(ii) Suppose that 6 = 0. Then the process (B;,, t < To(B)) has the same law as

(2, t < Ty(p)). Here, p; is the zero-dimensional Bessel process started at py = /g -
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Lemma 3.2. Let (By, t > 0) be the Brownian motion started at xo € R. Set
t
o(x) =4 lexpuz, A = / o(Bsy) ds, 7 =inf{s > 0: A; > t}.
0

Then the process (B,,, t > 0) has the same law as (2 lnp;, t > 0). Here, p; is the
2-dimensional Bessel process started at py = exp(xo/2).

Remark. In what follows, we will always use the notation A for (2 —§) ', O

Proof of Lemma 3.1. We will give the proof only for the case 6 > 2. Let a and
b satisfy the condition 0 < a < zg < b < co. Set X; = B,,, X = X}\r, (x)amy (x) -
The process X is a regular continuous strong Markov process on [a, b] with the scale
function s;(x) = x. Its speed measure m;(dx) is given by the density 20(z) (see [14,
ch. X, Theorem 2.18]).

The process p; is a regular continuous strong Markov process on (0,00) with the
scale function sy(z) = —227?. Its speed measure msy(dz) has the density —2X 2°~1 (see
(1.3), (1.4)). The function F : x — 2?7% is a homeomorphism of (0,00) onto itself.
The process Y; = F'(p;) is a regular continuous strong Markov process on (0, 0c) with
the scale function s3(z) = —so(F~1(z)) and the speed measure mz = myo F 1. It is
easy to verify that s3(x) = x and my has the density 20(z).

Thus, the processes X{“’ and Y;‘”’ = YA, (v)aT,(v) have the same speed measure and
the same scale function. Therefore, they have the same law (see [4, ch. 15, section 3]).
The process Y; (and hence, X;) reaches neither 0 nor oo (see (1.5)). Since a and b
are arbitrary, we deduce that (X;, ¢ > 0) and (Y;, ¢ > 0) have the same law. O

Lemma 3.1 for the cases 0 < § < 2 and § = 0 as well as Lemma 3.2 are proved in
the same way.

Lemma 3.3. Let (B, t > 0) be the Brownian motion started at a € R and let

b<a. Set
ab __ 16+b

Here, LY is the local time of By at a point x. Then Z§® has the following properties:

(i) the process (Z3%, 0 < 0 < a —b) has the same distribution as (|Wy|?, 0 < 0 <
a —b), where Wy is the two-dimensional Brownian motion started at zero;

(ii) for any 6 > 0,

EZ" < 2(a—b) A 26.

Proof. (i) This statement is a straightforward consequence of the Ray-Knight
theorem (see [14, ch. XI, Theorem 2.2]) and the scaling property of the Brownian
motion.

(ii) Let us fix & > a — b. It follows from (1.10) that the process M; =
(B — (0+b))” — LL*" is a local martingale. Hence, M;,z,(p) is a local martingale
bounded above. Therefore,

1 1
E {9 — 5236] =E {9 — §L§,:’(’}B)} = EMy,(p) > EM,

=(a—(0+D) =—a+0+0.



Thus, EZ§® < 2(a — b) for any 6 > a — b. This, combined with (i), completes the
proof. O

Remark. The equality is valid in statement (ii) of Lemma 3.3. This follows from [1,
formula 1.2.3.1]. O

We will further need the following statement proved in [2].

Proposition 3.4. Suppose that —oc < p < q¢ < 400 and p is a measure (positive
but not necessarily finite) on (p,q). Let (U, p <t < q) be a random process with
measurable sample paths on (p,q) such that E|Uy| < oo for any t € (p,q). Suppose
that there exist constants d > 1, ¢ > 0 for which

E|U,|” < c(E|UY, p<t<aq.

Then ‘ ‘
/ |Up| p(dt) < o0 a.s. <= / E|Uy| pu(dt) < oc.
P

p

Proof of Theorem 2.2. We will give the proof only for 6 > 2. Let us first consider
the case py > 0. Thanks to Lemma 3.1 (i), we may write p, = B}, t > 0.

Let py € C,. Then & = Tj(p) A T,(p), where [ and r are defined in (2.2) and
(2.3). Note that | < py < r. Let o, f € (0,00) be arbitrary constants satisfying the
inequality | < a < py < 8 <r. Set

a=a*" b=p>",

Ty = To(p) NT(p), T2 = To(B) ATy(B).

Using the change of variables formula and taking (1.11) into account, one gets

T1 Tl

T>
flp)ds= [ f(Br)ds= [ [f(B})dA, (3.1)
0 0 0
T

— f(BN o (B,)ds = /000 h(z) o(x) LY, dx. (3.2)

0

Here, h(z) = f(2*) and o(z) is defined in Lemma 3.1 (i). It follows from the choice
of @ and (8 that o is bounded on [a,b] and h is integrable on [a,b]. The local time
L7, is continuous in x. Thus, equality (3.1), combined with (1.12), implies that

P{ Tlf(ps)ds<oo} = 1.

Since o and 3 are arbitrary, we conclude that

P {Vt <Ti(p) NT(p), /Otf(ps) ds < 00} =1L

Suppose that pg > 0, py ¢ C,. Then £ =0. Let o, B be arbitrary constants such
that 0 < a < py < f < 0o. Equality (3.1) remains valid with the same notations as



above. It follows from (1.13) that L7 > 0 a.s. The conditions py > 0 and py ¢ C,
imply that x¢ ¢ Cj,. From (3.1), we obtain

P{Oﬂfwaw=mw}=1

As « and [ were chosen arbitrarily, we deduce that

po>0,p ¢ C, = P{V6>0, /Ef(ps)ds:oo}zl. (3.3)
0

This conclusion, in view of the strong Markov property of p;, implies that, for

Po > Oa Po € Cga
Ete

P{E|5>O: f(ps)ds<oo}:O.

3
Thus, for py > 0, the proof is completed.

We will now consider the case py = 0. Suppose first that py € C;. Then & = T,(p).
Let a and f satisfy the inequality 0 < o < 8 < r. The process

pr = PLTa(p) — PTa(p), 20

is the J-dimensional Bessel process started at «. By Lemma 3.1 (i), we can write

pr = B}, where B, is the Brownian motion started at a = a*™°. Set b = 5?7 and

note that 0 < b < a. We have

T5(0) H Ti(B)
/ F(ps) ds = / F(7) ds = / F(BY) o(By) ds
0 0

Tu(p)

= /boo f(@*) o(x) L, dz = /OOO h(z)o(z+b) Z2 dx. (3.4)

Here,

h(z)=f((x+0)), =>0,  zZP=L3L, x>0

It is easy to verify the equalities

oo

) w4 vt 0 dn =02 [ i) (7% dy
=2 [T i = [ i@ <. 69
Taking Lemma 3.3 (ii) into account, we arrive at
E [/Oooh(x)a(anb)Z;bdx] < Q/Omh(x)a(x+b)xdx:@ < 00,

where © depends only on 3. This inequality, together with (3.4), implies that

E { / " o ds} <o=0()

Tu(p)
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Since « is arbitrary, we get

(r)
E[/OTM) f(ps)ds} <0 < 0.

Due to the choice of 3, we deduce that

p {w <To(p). /Otf(ps) ds < oo} —1

On the other hand, the strong Markov property for p;, together with (3.3), implies
that

P {Ht > T, (p) : /Otf(ps) ds < oo} = 0.

Now, let po =0 and py ¢ C,. Then £ = 0. We must show that

P {vg >0, /ng(ps) ds = oo} — 1. (3.6)

If zero is a limit point for the set (0,00) \ C,, then (3.6) immediately follows from
(3.3) and the strong Markov property of p;. Because of this, we will assume that there
exists v > 0 such that (0,7) € C,. Let a and S satisfy the inequality 0 < o < < 7.
The following equalities are derived similarly to (3.5):

z ﬁ
/0 (x +b) h(z)o(x + b) de = /( x f(x)dr < oo, (3.7)

b+2)*
B

/Ooo(z b h(x) o + b) dr = /0 v f(z) dz = oo. (3.5)
We use here the same notations as in (3.5). It follows from (3.8) that
/000 zh(z)o(z+b)dr = oo. (3.9)
Let (W, t > 0) be the two-dimensional Brownian motion started at zero. Set
D= {w : /00 h(z) o(z +b) |[We(w)|* dv = oo} .
0

Inequality (3.7) implies that D belongs to the tail o-field G = (., 0(Ws, s > 1).
Blumenthal’s Zero-One law, combined with the time-inversion property of the Brownian
motion, implies that P(D) equals either 0 or 1. Due to Proposition 3.4 and equality
(3.9), we have P(D) > 0. Therefore,

/ h(z) o(z +b) [W,|*dr = 00 as.
0

Taking Lemma 3.3 (i) into account, we deduce that

a— 00

a—b
/ h(z) o(x + b) Z% doe —— .
0
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Combining this with (3.4), we obtain

T5(p)
/ fps)ds ]

a( ) a—0

On the other hand,
Ts(p) T5(p)
| teds 2= [ e as

. (p) a—0 0

Here, [ can be arbitrarily small. Thus, (3.6) is verified and the proof of Theorem 2.2
is completed. O

The proof of Theorem 2.5 is based on the following statement (see [14, ch. VII,
Corollary 4.6]).

Proposition 3.5. Let (B;, t > 0) be the Brownian motion started at a € R and
let ¢ <a. Let (Vi, t > 0) be the three-dimensional Bessel process started at zero. Set
Sa—c(V) =sup{s > 0:V; = a—c}. Then the process (B, 0 <t < T.(B)) has the
same distribution as

Vga o t+ C, 0 S t S Sa_C(V).

Proof of Theorem 2.5. We will give the proof for 6 > 2. In view of (1.5), we may
consider only v > 0. Suppose that 0 < py < . In this case, P{T,(p) < oo} =1. We
may write p; = B;\t as above. Let a be an arbitrary constant satisfying the inequality
po < a<7v.Set a=a?"?, ¢c=~*7 Thanks to Proposition 3.5, we have

T(p) T.(B)
/ ¢WM@=/‘ (B o(B,) ds

a(p) a(B)

Sa—c(V)
= [ e v ate s Vs
0

Here, V; is the three-dimensional Bessel process started at zero. Keeping in mind that
Se a._s.[]) 0, ¢ > 0 and employing Theorem 2.2, we obtain the following implications:
E—r

o
E|5>O:/ (v—2) flx)dr < o0 =
y—e

=500 [ -0 107 o)y < 00 =

P{Ele—e )>0: f ((c+ Vi) (c+Vs)ds<oo}:1:>

0
Ss
P{H >0/ ))a(c+v;)ds<oo}:1:>
0
T“V
P{Ela: <fy/ f(ps ds<oo} 1 =
Taﬂ
T (p)
P{Ela?: >0/ f(ps ds<oo}:1.
T“V
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This proves (2.4) for 6 > 2, v > py. The other cases as well as (2.5) are treated in the
similar manner. O

Proof of Theorem 2.6. We will give the proof only for (2.6). We can write

pr = B;\t, where B; starts at xy = pg"s. Property (1.7) of the Bessel processes implies
that

. N 2—§ __
lim B;, = lim p;"° =0 aus.
t—o0 t—o00

Therefore, 7o, = Ty(B) a.s. Set f(x) = f(z)I(x > py). We have

0o To(B) _ Sz (V) _
| reads= [T R ey [ fuN o) ds
0 0 0

where V; is the three-dimensional Bessel process started at zero. We may assume that
po € Cy (otherwise, £ = 0). Then the following implications are valid:

/ooxf(:v)dx<oo — /ooxf(z)dx<oo —
Po 0
| vt et dn < oo —

Szq(V)
P{/0 f(VS)‘)U(VS)ds<oo}:1 —

P{/Uoof(ps)ds < oo} _1

Now, statement (2.6) follows from the fact that

/Oof_(ps)d8<oo = /Oof(ps)ds<oo
0 0

on the set {£ < co}. Statement (2.7) as well as (ii) are proved in the same way. O

Proof of Theorem 2.7. We will give the proof for 0 < § < 2. We may assume
that p, = B} . The process A; which is defined in Lemma 3.1 (i) satisfies the following
inequality: A; < fJU(|Bs|)ds. The function o is locally integrable on [0,00). The
Engelbert-Schmidt Zero-One law (Proposition 1.1) implies that fot o(|Bs]) ds < o a.s.
Thus, for each ¢ > 0, we have A; < oo a.s., and consequently, 7 %) oo. We arrive
at the equality

| swas [ s, ds

The desired result now follows from the well-known property of the Brownian motion
(see [14, ch. X, Proposition 3.11]):

/h(m) de >0 = / h(Bs)ds = oo a.s.
R 0
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4 The Application of the Obtained Results

Let P2 denote the distribution of the §-dimensional (§ > 0) Bessel process started at
a >0 (i.e. P} is a probability measure on the path space C([0,0))).

The following theorem is the main result of this section.

Theorem 4.1. Suppose that 6 >0, >0 and n# 6. Then

(i) for each a > 0, the measures P? and P are singular on the o-field Fo =
o0(Xs, s > 0), where X; denotes the coordinate process on C([0,00));

(ii) the measures P{ and P} are singular on the o-field Foy = (\.oq0 (X, s <é).

The proof of Theorem 4.1 is based on the following statement.

Lemma 4.2. Let p; be the §-dimensional Bessel process started at py > 0. If
0 > 2, then

1 t _9 d a.s. 1
f— s — —.
lnt 1 pS t—o00 5 - 2

Proof. Let us first suppose that pg = 0. Then the process p, satisfies the following
self-similarity property:

1
Ve >0, Law (%pd’ t> 0) = Law(p;, t > 0). (4.1)

In order to prove (4.1), it is sufficient to note that the process (1p?,t > 0 ) satisfies
SDE (1.1), and therefore, it has the same distribution as the process (p?, ¢ > 0).
It follows from (4.1) that the sequence

Ck:/ p2ds, k=0,1,...

k

is stationary. According to Birkhoff’s theorem,

n—1 n

]- € a.s.
'y :ckz—/ pi2ds 5 E[G]G),
n n Jq n—o00

where G denotes the o-field of invariant sets. Any set from G belongs to the o-field
(Mnen @(Cns Gty - - ) which, in turn, belongs to the tail o-field X = (,.,0(ps, s > 1).

Let us now prove that X is trivial, i.e. the probability of any set from X equals
either 0 or 1. The Bessel process is a Feller process (see [14, ch. XI, section 1]),
and therefore, it satisfies Blumenthal’'s Zero-One law. In other words, the o-field
Foy = Neso(ps, s < €) is trivial. Moreover, the Bessel process started at zero has
the following time-inversion property (see [15]):

Law(tpi/s, t > 0) = Law(py, t > 0). (4.2)

The triviality of F{, , together with (4.2), implies that X is also trivial.

Thus,
1 e” as e
—/ ps_st — E[/ p;2d8:|.
n 1 n—oo 1
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Since the process p;? is positive, we arrive at:

1 ! 9 a.s. ¢ 9
m ! Ps ds g) E|:/1 Ps d5:| . (43)

In order to compute the constant in (4.3), we use the fact that the distribution of the
random variable p? has the following density (see [14, ch. XI, Corollary 1.4]):

p(z) = (20721 (6/2)7 9"/ exp(—y/2t),

where I" denotes the gamma-function. Easy computations show that

¢ 1
_9 .
E[/l Ps ds] 0=

Thus, the Lemma is proved for py = 0.
If p; is the Bessel process started at zero and a > 0, then T,(p) < oo a.s. (see
(1.7), (1.8)). It follows from the above reasoning that

1 t ) 1 Ta(p)+t ) s 1
— - ds = — Cds —— ——. 4.4
lnt/l s Tt iy T ol 52 (44

By the strong Markov property,
Law(pr,(p)+¢, t > 0) = Law(py, t > 0),

where p; is the J-dimensional Bessel process started at a. Formula (4.4) proves the
Lemma in the general case. a

Proof of Theorem 4.1. (i) We will consider the case a > 0 (for a = 0, (i) follows
from (ii)).

For 6 = 0, the statement is obvious since zero is an absorbing point for the zero-
dimensional Bessel process.

Now, let 0 < § <7 < 2. Then P2 {T;(X) < oo} = PHTy(X) < oc} =1 (see (1.6)).
Let us choose d satisfying the inequality —n < d < —§. Corollary 2.4, in view of the
strong Markov property, implies that

To(X)+1
/ X%ds =00 Pl-as., (4.5)
To(X)
To(X)+1
/ X?%ds < oo Pl-as. (4.6)
To(X)

This yields the singularity of P7 and P on F,.

For 0 < 6 < 2 < 7, the desired assertion is a consequence of the equalities:
P {Ty(X) < 00} =1 and PHTH(X) < oo} = 0.

If 2 <§ < n, then the statement of Theorem 4.1 follows from Lemma 4.2.

(ii) For 6 = 0, the statement is obvious.

If 0 < <2 and § <n, we can choose d satisfying the inequality —(n A2) < d <
—0, and the desired result follows from (4.5), (4.6) (in this case, To(X) = 0).
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We now turn to the case 2 < 6 < 7. Let p; be the §-dimensional Bessel process.
Set p; = tp1s¢. Due to the time-inversion property (see (4.2)), the process (p, t > 0)
has the same distribution as (p;, ¢ > 0). By Lemma 4.1, for any n € N, we have

1 1/n . 1 t P 1 t o s 1
— p,ods=— [ s pl/sds:— p,ds — ——.
Int /i, Int J, Int J,

Hence, the set

1 [ln 1
A, =19X P— X ?ds — ——
{xec@on: i [ x s

has Pj-measure 1. Similarly, PJ(B,) =1 for

1 [um 1
B,=3X e C([0,00)) : — X, ?ds —— —— 5.
Int /), tooo 7 — 2

Consequently, for the sets A = liminf, , A4, and B = liminf, . B,, we have:
PJ(A) =1 and PJ(B) = 1. Moreover, A and B belong to the o-field Fy,. Besides,
AN B = (. Thus, the measures P and P{ are singular on Fo, . This completes the
proof. O

Remarks. (i) If a > 0 and 6 An > 2, then P7 and P? are equivalent on each o-field
Fr=0(Xs, s <t).

(ii) If @ > 0 and d An < 2, then P? and P? are neither equivalent nor singular on
Fi, t>0. O
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