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Abstract. We introduce the possibility approach to pricing by arbitrage. The
characteristic feature of this approach is that it does not employ the historic
probability measure.

The study is performed on two levels of generality:

e for a static model with a finite number of assets;
e for a general arbitrage pricing model introduced in [3].

The main results obtained for each of these models are: the fundamental theorem
of asset pricing and the representation of the fair price intervals.
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1 Introduction

1. Purpose of the paper. When a coin is tossed, everyone agrees that there exists
a probability measure on the set of elementary outcomes, and this measure assigns the
mass 1/2 to each of the two outcomes. When shooting at a target is performed, everyone
agrees that there exists a probability measure on the set of elementary outcomes. The
exact form of this measure cannot be found by pure thought, but can be estimated
by repeating the trials. In both examples, the legitimacy of a probability measure is
based on the existence of a fixed set of conditions that admits an unlimited number of
repetitions. The importance of such a set of conditions was stressed by Kolmogorov [7;
Ch. 1, § 2].

In the problems that finance deals with, such a fixed set of conditions does not seem
to exist at all. Therefore, it is questionable whether there exists a historic measure P,
which serves as an input to the overwhelming majority of arbitrage pricing models. It
is unquestionable that even if such a measure exists, then no one knows exactly what it
is.

But let us now recall that the origin of arbitrage pricing lies in decomposing a
complicated contract into simpler contracts, and this does not require any probabil-
ity considerations. Another example: when calculating the exchange rate through the
triangular arbitrage, the probability measure is not needed. One more example: the



trivial interval ((Sp — K)*,Sp) of fair prices of a European call option is obtained with
no probability at all. However, in more complicated models the structure of P is es-
sential. The basic example in this line is the Black—Scholes model, in which it is the
particular structure of P that yields the completeness. Of course, if P is eliminated in
such a model, then we get unacceptably wide intervals of fair prices. But nevertheless,
in some cases the following effect takes place: if the market prices of a sufficient number
of traded derivatives are taken into account, then one can obtain a reasonably small
fair price interval of a new contract without relying on the original probability measure.
This method was successfully employed (for various models) in the papers [1], [2], [6].

The above observation justifies the general possibility approach to arbitrage pricing.
It requires as the first input the set of all possible outcomes and does not require the
probabilities assigned to these outcomes. To be more precise, the possibility approach
is based on a possibility space (Q,F) instead of a probability space (Q,F,P). We
call Q the set of possible elementary events. Usually it can be defined by pure thought
(i.e. without using the real data) in an unambiguous way. For example, a natural set
of possible prices of an equity is Ry, (= (0,00)); a natural set of possible prices of
d equities is ]R‘i +- Typically, the set of possible elementary events admits a natural
topology, and F is taken as its Borel o-field.

The possibility approach is introduced on two levels of generality: first, we consider
a static model with a finite number of assets, and then we consider the general arbitrage
pricing model introduced in [3].

2. Static model with a finite number of assets. This is a classical model of
financial mathematics (a review of arbitrage pricing in this model can be found, for
example, in [5; Ch. 1] or [3; Sect. 2]). In Section 2, we consider the possibility version
of this model.

We introduce the possibility variant of the No Arbitrage (NA) condition and prove
that this condition is satisfied if and only if for any nonempty set D € F, there exists a
martingale measure Q such that Q(D) > 0. A geometric criterion is presented as well.

Furthermore, using the possibility version of the NA condition, we define the set of
fair prices of a contingent claim F' and prove that it coincides up to endpoints with
the interval {EqF : Q € M}, where M denotes the set of martingale measures. A
geometric representation of this set is given as well.

3. General arbitrage pricing model. In [3], we presented a unified approach
to pricing contingent claims through a new concept of generalized arbitrage. The No
Generalized Arbitrage (NGA) condition is a strengthening of the classical NA condition.
This was done within the framework of a general arbitrage pricing model. Various models
of arbitrage pricing theory, including

e static as well as dynamic models;
e models with an infinite number of assets;
e models with transaction costs (see [4]),

can be viewed as particular cases of this general model.

In Section 3, we consider the possibility version of a general arbitrage pricing model.
It is defined as a triple (£, F, A), where (€2, F) is a possibility space and A is a convex
cone in the space of all F-measurable real-valued functions. From the financial point
of view, A is the set of discounted incomes that can be obtained in the model under
consideration.



For a model (92, F, A), we introduce the possibility variant of the NGA condition.
Similarly to [3], we define a risk-neutral measure as a measure Q on F such that
EQX ™ > EqX™ forany X € A (X~ and X denote the negative part and the positive
part of X, respectively; the expectations EQ X, EQX™ here are allowed to take on the
value +00).

Theorem 3.6 states (under a natural assumption) that the NGA condition is satisfied
if and only if for any nonempty set D € F, there exists a risk-neutral measure Q such
that Q(D) > 0. Thus, a risk-neutral measure appears to be a more fundamental object
than a historic probability measure. A nice illustration is provided by the bookmaking,
where the “true” distribution on the set of outcomes is completely unclear, while the
“market-estimated” distribution is easily recovered from the bets.

Next we consider the problem of pricing contingent claims. We define a fair price of
a contingent claim F' (F' is a measurable function on (£, F)) as a real number x such
that the extended model (2, F, A+ {h(F — z) : h € R}) satisfies the NGA condition.
Theorem 3.9 states (under some natural assumptions) that the set of fair prices of F
coincides up to endpoints with the interval {EqF : Q € R}, where R denotes the set
of risk-neutral measures.

4. Particular models. In order to apply the general results of Section 3 to a
particular model, one should

1. specify the set A of attainable incomes (this is typically done in a straightforward
way);

2. find out the structure of the set of risk-neutral measures (typically, the risk-neutral
measures in a particular model admit a simpler description than the general def-
inition of a risk-neutral measure).

Once this is done, Theorem 3.6 gives the necessary and sufficient conditions for the
absence of generalized arbitrage, while Theorem 3.9 yields the form of the set of fair
prices of a contingent claim. Both procedures 1 and 2 were implemented in [3], [4] for
a number of particular models.

However, the possibility framework gives rise to an interesting question: Is the NGA
condition (in its possibility version) satisfied in a particular model? The answer depends
on the “geometry” of the price structure. In Sections 4-5, we study this problem for a
number of particular models, namely

e a discrete-time model with a finite number of assets (Section 4);
e a continuous-time model with a finite number of assets (Section 5);
e a model with European call options as basic assets (Section 6).

Acknowledgement. 1 am thankful to the anonymous referee for a very careful
reading of the manuscript and important suggestions.

2 Static Model with Finite Number of Assets

The reader is invited to compare this section with [3; Sect. 2].

Definition 2.1. A possibility space is a pair (€, F), where €2 is a set and F is a
o-field on 2. We call Q2 the set of possible elementary events.



Let (€, F) be a possibility space. Let S; € R? and S; be an R?-valued F-
measurable function. From the financial point of view, S? is the discounted price of the
i-th asset at time n. Define the set of attainable incomes by

d
A= {Zhi(s;‘ —SH:h e ]R}.
i=1
Definition 2.2. A model (€2, F, Sy, S1) satisfies the No Arbitrage (NA) condition
if ANLY = {0} (LS denotes the set of Ry -valued F-measurable functions).

Definition 2.3. A martingale measure is a probability measure Q on F such that
Eq|Si| < 0o and EqS; = Sy. The set of martingale measures will be denoted by M.

Notation. Set C' = conv{Si(w) : w € Q} and let C° denote the relative interior
of C.

Theorem 2.4 (Fundamental theorem of asset pricing). Forthe model (2, F, Sy, S1),
the following conditions are equivalent:

(a) NA;

(b) Sy € C°;

(c) for any D € F\ {0}, there exists Q € M such that Q(D) > 0.

Proof. Step 1. Let us prove the implication (a)=(b). If Sy ¢ C°, then, by the
separation theorem, there exists h € R? such that (h,(S; —S;)) > 0 pointwise and
(h, (S1(w) — So(w))) > 0 for some w € Q. This contradicts the NA condition.

Step 2. Let us prove the implication (b)=(c). Fix D € F\ {(}. Take wy € D. The
set

m m
E = {Zaksl(wk):meN, Wiy ey Wm €Q, ag,...,a, € Ry, Zakzl}
k=0 k=0

is convex, and the closure of E contains {Si(w) : w € Q}. Consequently, E O C°.
Thus, there exist wi,...,w, € Q and aq, ..., o, € Ri; such that Y, ar =1 and
> e kS1(wy) = Sp. Then the measure Q =Y, axd,, belongs to M and Q(D) > 0
(d, denotes the point mass concentrated on {w}, i.e. ,(A) = I(w € A)).

Step 3. Let us prove the implication (c¢)=(a). Suppose that the NA condition
is not satisfied, i.e. there exists X € AN (L% \ {0}). Consider Q € M such that
Q(X > 0) > 0. Then EqX > 0. On the other hand, as Q € M, we should have
EqQX = 0. The obtained contradiction shows that the NA condition is satisfied. O

Now, let F' be a real-valued F-measurable function. From the financial point of
view, F' is the discounted payoff of some contingent claim.

Definition 2.5. A real number z is a fair price of F' if the model with d+ 1 assets
(Q, F,x,88,...,88 F,SL, ..., 5% satisfies the NA condition. The set of fair prices of F
will be denoted by I(F).

Notation. Set D = conv{(F(w),Si(w)) : w € Q} and let D° denote the relative
interior of D.

For two subsets I, J of the real line, by the notation I ~ J we will mean that the
interiors of I and J coincide and the closures of I and .J coincide. In particular, if
I ~ J and J is an interval (that may be closed, open, or semi-open), then [ is also an
interval, and I coincides with J up to the endpoints.
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Theorem 2.6. Suppose that the model (2, F,Sy,S1) satisfies the NA condition.
Then
I(F)={x:(z,5) € D°} ~ {EqF : Q € M}. (2.1)

The ezpectation EQE' here is taken in the sense of finite expectations, i.e. we consider
only those Q, for which Eq|F| < occ.

Proof. Theorem 2.4 implies that
I(F) ={z:(z,5) € D°} C{EqF : Q € M}. (2.2)

Let z € {EqF : Q € M}. Take Qo € M such that x = Eq,F'. One can find Q, € M
such that Eq,|F| < oo and conv supp Lawg, (F,S;) = D (Q; can be found in the form
> by, ). For any e € (0,1), the measure Q(¢) = (1 —£)Q + £Q: belongs to M
and conv supp Lawq)(F, S1) = D. Therefore, Eq.)(F,S1) € D°, which means that

EquF € {z: (x,5) € D°}.

Furthermore, Eq()F T) x. This, together with (2.2), proves the approximate equality
€
n (2.1). O

Remarks. (i) Let V,(F) (resp., V*(F)) denote the left (resp., right) endpoint of
I(F). Let F be such that V,(F) < V*(F). It follows from the equality I(F) = {z :
), V*(F)).
ut

*

(x,Sp) € D°} that I(F) = (Vi(F As for the interval {EqF : Q € M}, it has
the endpoints Vi(F) and V*(F), but may contain them. For instance, this interval
contains V*(F) if and only if

(V*(F),Sy) € conv{(F(w),S1(w)):w € Q}.

(11) Another way to define the fair price interval could be as follows. We introduce
the lower and the upper prices as

Vi(F) = sup{x : there exists X € A such that x — X < F pointwise},
V*(F) = inf{z : there exists X € A such that x + X > F pointwise},

and the fair price interval is defined as the interval with the endpoints V,(F') and V*(F).
Using the equality I(F) = {x : (z,S) € D°} and elementary geometric considerations,
one can check that if the model (2, F, Sy, S;) satisfies the NA condition, then the values
Vi(F) and V*(F) defined this way coincide with the values defined in the previous
remark.

3 General Arbitrage Pricing Model
The reader is invited to compare this section with [3; Sect. 3].

Definition 3.1. A general arbitrage pricing model is a triple (9, F, A), where
(2, F) is a possibility space and A is a convex cone in L° (L° is the space of real-
valued F-measurable functions). The set A will be called the set of attainable incomes.



—{(F(w), 51(w)) : w e Q}

- I(F)
Vi(F) V*(F) R

Figure 1. The joint arrangement of I(F),
V.(F), V*(F), {EQF : Q € M}, and D°. In the
example shown here, I(F)= (V.(F),V*(F)),
while {EqQF': Q € M} = (Vi(F),V*(F)].

Notation. (i) Set

B = {Z € L’ : there exist (X, )nen € A and a € R such

(3.1)
that X,, > a pointwise and 7 = lim X, pointwise}.
n—oo
(ii) For Z € B, denote y(Z) =1 —inf .o Z(w) and set
A={X-Y:XeA YelLl}
X
Ay(Z) =9 =———=: X €Ay,

2(2) {Z+7(Z) 1} (3.2)

A3(Z) - AQ(Z) N LOO,
Ay(Z) = closure of A3(Z) in (L™, Mp).
Here LY is the set of R -valued elements of L°; L is the space of bounded elements

of LO; o(L*®, My) denotes the weak topology on L* induced by the space M of finite
o-additive measures on F (i.e. signed measures with finite variation).

Definition 3.2. The model (Q2, F, A) satisfies the No Generalized Arbitrage (NGA)
condition if for any Z € B, we have A4(Z) N L% = {0}.

Definition 3.3. A risk-neutral measure is a probability measure Q on F such that
EQX ™ > EqX™ for any X € A. The expectations EQ X~ and EqX™ here may take on
the value +o00. The set of risk-neutral measures will be denoted by R.

Notation. For Z € B, we will denote by R(Z) the set of probability measures Q
on F with the property: for any X € A such that X > —aZ —  pointwise with some
o, € Ry, we have Eq|X| < oo and EqX < 0.

The following lemma is almost the same as [3; Lem. 3.4].

Lemma 3.4. For any Z € B, we have R C R(Z).

The following basic assumption is satisfied in all the particular models considered
below.



Assumption 3.5. There exists Z; € B such that R = R(Z,) (in particular, both
sets might be empty).

Theorem 3.6 (Fundamental theorem of asset pricing). Suppose that Assump-
tion 3.5 is satisfied. Then the model (2, F, A) satisfies the NGA condition if and only
if for any D € F \ {0}, there exists a risk-neutral measure Q such that Q(D) > 0.

The proof of Theorem 3.6 follows the same lines as the proof of its probabilistic
analog in [3; Th. 3.6]. It is based on the following possibility analog of the Kreps—Yan
theorem:

Lemma 3.7. Let C be a o(L>°, Mp)-closed convex cone in L™ such that C O L*®
(L= is the set of negative elements of L>). Let W € L* \ C. Then there exists a
probability measure Q on F such that EQX <0 for any X € C' and EQWW > 0.

Proof. By the Hahn-Banach separation theorem (see [9; Ch. II, Th. 9.2]), there
exists a measure Qy € My such that Eq,W ¢ {Eq, X : X € C}. Without loss of
generality, Eq,WW > 0. As C is a cone, Eq,X <0 for any X € C. Since C' O L®, Qo
is positive. Then the measure Q = cQq, where ¢ is the normalizing constant, satisfies
the desired properties. O

Proof of Theorem 3.6. Step 1. Let us prove the “only if” implication. Fix
D e F\{0}. Set W = Ip. Take Z, € B such that R = R(Z;). Lemma 3.6
applied to the o(L*, Mp)-closed convex cone A4(Z;) and to the point W yields a
probability measure Qp on F such that Eq,X < 0 for any X € A4(Z) and Eq,W > 0.

By the Fatou lemma, for any X € A such that is bounded below, we have

EQo#(ZO) < 0. Consider the measure Q =

constant. Then Q € R(Z;) = R and

_ X
Zo+~(Zo)

Zo+7(Zo) Qo, where ¢ is the normalizing

cW
= EQO
Z(] + ’}/(Z(])
Step 2. Let us prove the “if” implication. Suppose that the NGA condition is not

satisfied. Then there exist Z € B and W € Ay(Z) N (L% \ {0}). Take Q € R such that
Q(W > 0) > 0. It follows from the Fatou lemma that Z is Q-integrable. Consider the

Q(D) > 0.

measure Q = ¢(Z +v(Z))Q, where ¢ is the normalizing constant. For any X € A such
that ﬁ(z) is bounded below by a constant —a (a € Ry ), we have

EqX™ < Eq(aZ +ay(Z)) < oo,
and consequently,

E- X
Z+(2)

Hence, EgX < 0 for any X € A4(Z). On the other hand,

EgW = cEq(Z +1(Z)W > 0.

The obtained contradiction shows that the NGA condition is satisfied. O

= CEQX S 0.

Remark. It is seen from the above proof that the necessity part in Theorem 3.6 is
true without Assumption 3.5. It can be shown that this assumption is essential for the
sufficiency part.

Now, let F' be an F-measurable function meaning the discounted payoff of some
contingent claim.



Definition 3.8. A real number z is a fair price of F if the extended model
(QF, A+ {h(F —z) : h € R}) satisfies the NGA condition. The set of fair prices
of F' will be denoted by I(F).

Theorem 3.9 (Pricing contingent claims). Suppose that the model (Q, F,A)
satisfies Assumption 3.5 and the NGA condition, while F is bounded below and
EQF < oo for any Q € R. Then

I(F) ~ {EqF : Q € R}.

Proof. Step 1. Let us prove the inclusion

I(F) C | inf EqQF, sup EQF|.
QeR QeR
Let x € I(F). Take Zy € B such that R = R(Zy). Set Zy = Zy+ (F — x). Then
71 € B', where B' is defined by (3.1) with A replaced by

A'={X+nhF-2): X €A heR}. (3.3)

Set W = 1. Lemma 3.7 applied to the o(L*°, Mp)-closed convex cone Ay(Z;) (A(Z)
is defined by (3.2) with A replaced by A’) and to the point W yields a probability
measure Qp on F such that Eq,X <0 for any X € A)(Z,). By the Fatou lemma, for
any X € A’ such that 5 is bounded below, we have EQom < 0. Consider

Z +7(
the measure Q = m Qo, where ¢ is the normalizing constant. Then Q € R(Z;) C

R(Zy) = R. Moreover, Eq(z — F) < 0 and Eq(F — ) < 0 since the functions le_vle)
#7(121) are bounded below. Thus, EqF = z.

Step 2. Suppose that EqF = Eq F' for any Q,Q" € R. Let us prove the inclusion
EQF € I(F). Denote EqF by x. Suppose that = ¢ I(F), i.e. the model (2, F, A",
where A’ is given by (3.3), does not satisfy the NGA condition. Then there exist
Z e B and W e A} (Z)N (L5 \ {0}). Take Z; € B such that R = R(Z,). Lemma 3.7
applied to the o(L*, Mp)-closed convex cone A4(Z;) and to the point W yields a
probability measure Qq on F such that Eq,X < 0 for any X € A4(Z) and Eq, W > 0.
Consider the measure Q = mQO’ where ¢ is the normalizing constant. Then
Q € R(Zy) =R and EQW > 0. Moreover, EqF = x.

Choose an arbitrary Y = X + h(F — x) € A’ (here X € A) such that Y is bounded
below. It follows from the condition EqF = = that EQ X~ < co. As Q € R, we have
EqX < 0. This, combined with the condition EqF' = x, implies that EqY" < 0. By the
Fatou lemma, 7 is Q-integrable. Consider the measure Q = ¢(Z + v(Z))Q, where ¢ is
the normalizing constant. For any Y = X 4+ h(F —z) € A’ (here X € A) such that

#(Z) is bounded below by some constant —a (« € R, ), we have

and

EQY_ < EQ(O[Z—F Of’Y(Z)) < 0.

Consequently, Eq X~ < 0o, EQX < 0, and EqY < 0. This means that EQZJr 7 < 0.

Hence, EC)W < (0. But this is a contradiction since Q ~ Q and EqW > 0. As a result,
z € I(F).
Step 3. Let us prove the inclusion

(inf EqQF, sup EQF> CI(F).
QeR QeRrR
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Let x belong to the left-hand side of this inclusion, i.e.

inf EQF <z < sup EqF-
Qer QeR

Suppose that = ¢ I(F), i.e. the model (Q, F, A"), where A’ is defined by (3.3), does
not satisfy the NGA condition. Then there exist Z € B and W € A(Z)n (L% \ {0}).
Applying the same reasoning as in the previous step, we find a measure Q; € R such
that Eq,W > 0. By the conditions of the theorem, Eq,|F| < oc. Find measures
Q2, Q3 € R such that Eq,F' < z, Eq,F > x. Clearly, there exist oy, as, a3 € Ry, such
that a; +as+a3 =1 and EqF = x, where Q = a;Q; + a3Q2+ a3Q3. Note that Q € R
due to the convexity of R and EqW > 0. The proof is now completed in the same way
as in the previous step. O

The following example shows that the equality I(F) = {EqF : Q € R} (which is
true in the probability setting; see [3; Th. 3.10]) can be violated.

Example 3.10. Let Q = [0,1], F = B([0,1]), and A = {0}. Consider F(w) = w.
Then I(F) = (0,1), while {EqF : Q € R} = [0, 1]. 0

The next example shows that the assumption “EqF < oo for any Q € R” in
Theorem 3.9 is essential.

Example 3.11. Let Q =R, , F = B(R,), and

N
A= {ZhnXanbn :NeN, a, <b, € Ry, hy, GR},

n=1

where

b
Xab(w)zl(a<w§b)—/ e fdr, we.

Consider F(w) = e“.
If Q € R, then, for any a > 0, we have EqXy, = 0 (note that Xg, is bounded),
which means that

Q((0.a)) = Q) / "o tdr, acR,,.

Hence, Q has the form a;Q; 4+ asQs, where aj,ay € Ry, a; +ay = 1, Q = Jy,
and Qg is the exponential distribution on R, with parameter 1. Clearly, any measure
of this form belongs to R. We have EqF = 1 if Q = Q; and EqF = oo otherwise.
Consequently, {EqF : Q € R} = {1}.

Take now = € I(F). For n € N, set

0 ifw=0,
Folw)=<e™ ifwe(mm+1], m=0,...,n—1,
0 ifw>n,

Tp = / F,(x)e "dx.
0
Then F,, —x, € A. As z,, — o0, there exists ngy such that x,, > x. Then
(F(w) —x) = (Fpg(w) — Zpg) = Tpyg —x >0, w e Q.

But
(F—z)—(F,—x,) € AA={X+h(F—12): X €A, heR}.
This contradicts the choice of x. As a result, I(F') = (. O



4 Discrete-Time Model with Finite Number of As-
sets

We will consider a model with no transaction costs. Thus, we are given a possibility

=U,...,

=U,...,

the 7-th asset at time n. The set of attainable incomes is defined as

N d
A= {Z ZH;(S’ZL - 52—1) : Hy is fn_l—measurable}.

n=1 i=1

We will assume that, for any n = 0,...,N — 1, w € Q, there exists an atom a,(w)
of F, that contains w. (Recall that an atom of a o-field F is a set a € F such that
a # () and, for any D € F, we have either D D a or DNa=0.)

Notation. Set C,(w) = conv{S,1(v') : W' € a,(w)} and let C7(w) denote the
relative interior of C),(w).

Let M denote the set of probability measures on F, with respect to which S is an
(F,)-martingale.

Theorem 4.1 (Fundamental theorem of asset pricing). For the model (2, F, A),
the following conditions are equivalent:

(a) NGA:

(b) NA (i.e. ANLY ={0});

() Sp(w)eCo(w), n=0,...,N—1, we Q;

(d) for any D € F\ {0}, there exists Q € M such that Q(D) > 0.

Lemma 4.2. Suppose that condition (c¢) of Theorem 4.1 is satisfied. Let wy € €.
Then there exist wy,...,wm € Q and ap,...,anm € Ryy such that > )" oy, = 1 and
Yoo axX (wg) =0 for any X € A.

Proof. We will prove this statement by the induction in .

Base of induction. For N = 1, the statement is verified by the same arguments as
those used in the proof of Theorem 2.4 (Step 2).

Step of induction. Assume that the statement is true for N — 1. Let us prove it
for N. By the induction hypothesis, there exist wi,...,w; €  and ag,...,q; € Ry,
such that Wy = wy, Zi:o a; =1, and Zé:o a; X (w;) =0 for any X € A’, where

N-1 d
A= {Z Z H (S, — S ) H is fnl—measurable}.

n=1 =1
For any 1 =0,..., l, there exist (:Di(), - ,ajz'l(i) € aN,l(LNui) and &Z'[], Ceey &zl(z) € R++ such
that (,Nui() = CTJZ', Zé(i)o &ij = 1, and

1(3)
Z&z‘j(sN(@z‘j) - SNfl(aij)) = 0.
§=0
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Let (i(0),4(0)),...,(i(m),j(m)) be a numbering of the set {(i,j) : ¢ = 0,...,l, j =
0,...,0(7)}. We arrange this numbering in such a way that i(0) = j(0) = 0. Set
W = ai(k)j(k)a Q. = &i(k)az( k)j(k) k= 0 ,m. Then, for any

X = Z<Hn7 (Sn - Sn71)> € A:

we have
Z X (wg) Z Z Z a0 (Hy, (Wi5), (Sn(Wij) — Sp—1(@ij)))

+ . Oéi&ij<HN(@ij)a (SN(CT’Z'J') - SNfl(a’ij)»

T §&i<HN(°~”i)a liz); i (Sw (Wij) — 5N1@z‘j))> = 0.

In the second equality, we used the fact that H,, n=0,...,N and S,, n=0,...,N—1
are constant on the atoms of Fn_q. Thus, wy,...,w, and ay, ..., o, satisfy the desired
conditions. O

Proof of Theorem 4.1. Step 1. The implication (a)=-(b) is obvious.

Step 2. Let us prove the implication (b)=-(c). Suppose that there exist
m € {0,...,N — 1} and wy € © such that S, (wo) ¢ C° (wy). By the separation theo-
rem, there exists h € R? such that (h, (Spmy1(w) — Sm(w))) > 0 for any w € a,,(wp) and
(h, (Sm+1(w) — Sy (w))) > 0 for some w € a,,(wy). Set

H, (@) hl(w € ap(wp)) ifn=m+1,
nlW) =
0 otherwise.

Then
ZZHl Sy = S_1) € An(LE\ {0}),

n=1 =1
which contradicts the NA condition.

Step 3. Let us prove the implication (¢)=>(d). Fix D € F\ {0}. Choose wy € D.
Take wy,...,wy, € Q and «y, ..., o, € R, provided by Lemma 4.2. Then the measure
Q=>",ard,, belongsto M and Q(D) >0

Step 4. Let us prove the implication (d)=-(a). It has been shown in [3; Lem. 4.1]
that M C R. Now it follows from Theorem 3.6 that the NGA is satisfied (note that
the proof of the “if” part of that theorem does not employ Assumption 3.5). O

Corollary 4.3. Suppose that Sy € RL__,

{(S1(w), ., Sy(w)) 1w € Q) = (RE,)Y,

Fo=F2, and F = Fx. Then the model (0, F, A) satisfies the NGA condition.
Proof. It is sufficient to note that, for any w € Q and n =0,..., N — 1, we have
C?(w) =R%, | so that condition (c) of Theorem 4.1 is satisfied. O
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5 Continuous-Time Model with Finite Number of
Assets

We will first consider the frictionless model (its probability version was discussed in [3;
Sect. 4]). Thus, we are given a possibility space (€2, F) endowed with a right-continuous
filtration (F)se0,77 and a family (Si)iep,r) of R%-valued F;-measurable functions such
that, for any w, the map t — S;(w) is cadlag. We will assume that each component of
S is strictly positive (this condition is naturally satisfied if, for example, each S* is the
price process of an equity or an option). The set of attainable incomes is defined by

N d
A= {ZZH;(s;n—S;n_l):NeN, u < - < uy

n=1 =1

are (JF;)-stopping times, Hf1 is fun_l—measurable}.

It follows from the results of [3; Sect. 4] that if each component of S is bounded below,

then
d

R = R(Z(S’} — Sé)) ={Q: S is an (F;, Q)-martingale}.
i=1

We present two sufficient conditions for the absence of generalized arbitrage.

o, . d
Proposition 5.1. Suppose that Sp € RY

. _ . . N N . . . d
{S(w):weQ} ={f: fis acadlag piecewise constant function [0,7] — R} |
with a finite number of jumps, f(0) = Sy},

Fi=F7, and F = Fr. Then the model (2, F, A) satisfies the NGA condition.

Proof. Fix D € F\ {0}. Take wyp € D. Let 0 < t; < --- < txy < T be the
jump times of S.(wg). We set tg = 0, tyy1 = T. Consider the sequence S, = Sy, -
For this sequence, the set C(w) defined in the previous section equals R%, for any
we Qand n = 0,...,N — 1. Thus, we can apply Lemma 4.2, which yields the
existence of wy,...,w, € Q and ag,...,q, € Ry, such that S.(wy) is constant on
[ti,tisn), k=0,....,m, 1=0,....,N, >" oy =1, and the sequence (S, .., Siy,,) is
an (Fy., ..., Fiy,,)-martingale with respect to the measure Q = » ;" jody,. As S
is Q-a.s. constant on [t;,#;11), | = 0,...,N, the process (S;)icjor) is an (F;, Q)-
martingale. This means that Q € R. Moreover, Q(D) > 0. An application of Theo-
rem 3.6 completes the proof. O

e, 0 d
Proposition 5.2. Suppose that Sy € R%

{S.(w):we Q}={f: fis acadlag function [0, 7] — R%, with finite variation
such that, for any i, inf,cfoqy f*(t) > 0,and f(0) = So},

Fy=F7, and F = Fr. Then the model (0, F, A) satisfies the NGA condition.
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Proof. Fix D € F\ {0}. Take wy € D. Set ¢(t) = Si(wo), ¥'(t) = Ine'(t),
i=1,...,d,t€[0,T]. For each 7, the function ¢ can be represented as ¢* = ¢, —¢" ,
where ¢, and ¢’ are cadlag and increasing. Set

: ot : i(t
)\Q(t):w*() M= W a e

e—1’ 1 —eV

Let N, N, i=1,...,d be independent Poisson processes with intensity 1. For each
1=1,...,d, the process

Zy = exp{(N})xi.) = (V' )iy — (e = DAL () + (L —e A ()}, t€[0,T]
is a martingale with respect to its natural filtration. Let us denote the space of functions
standing in (5.1) by V. It is equipped with the o-field G = o(X;;t € [0,7T]), where

Xi(f) = f(t). Set Qo = Law(Z;;t € [0,7]). Then X is an (F;*,Qo)-martingale. In
view of the representation

Zi = ¢' ) exp{(N)xiy — Nxi o}, i=1,...,d, t €0, T),

we have Qo({¢}) > 0. Define the measure Q on {S.7'(C) : C € G} by Q(S.7'(C)) :=
Qo(C). Note that {S.7'(C) : C € G} = F and Q is correctly defined. Then S is an
(Fi, Q)-martingale. This means that Q € R. Moreover, the set S.”'({¢}) contains wy
and is an atom of F. Hence, S.”'({¢}) C D, and therefore, Q(D) > 0. An application
of Theorem 3.6 completes the proof. O

The following statement is rather surprising.
Proposition 5.3. Suppose that Sy € R%, |
{S.(w) :w e Q} = {f: fis a continuous function [0,T] — RL,, f(0) = Sy},
Fi=F7, and F = Fp. Then the model (Q, F, A) does not satisfy the NGA condition.

Proof. Suppose that the NGA condition is satisfied. By Theorem 3.6, there exists
a measure Q € M such that Q(D) > 0, where D = {S! = 1+1¢, ¢t € [0,T]}. Then
S should be an (F;, Q)-martingale (see [3; Sect. 4]). Moreover, S is continuous. On
the set D, the quadratic variation of S! is 0. This implies that S} = S} Q-a.e. on D
(see [8; Ch. IV, Prop. 1.13]). The obtained contradiction shows that the NGA condition
is not satisfied. O

Let us now consider the model with proportional transaction costs (its probability
version was discussed in [4; Sect. 3]). For this model, the set of discounted incomes is
defined as

N d
A= {Z S [CHU(H, > 0)S), — HiI(H: < 0)(1— M)S.,]
n=0 i=1
N eN, ug <--- < uy are (F;)-stopping times,

N
Hﬁb is F,, -measurable, and Z H, = O}.
n=0

Here A" € [0,1) means the coefficient of proportional transaction costs for the i-th asset.
For this model, we are able to prove the absence of generalized arbitrage under more
natural assumptions than those used for the frictionless model.
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Proposition 5.4. Suppose that Sy € ]RJFJr ,
{S.(w) :w € Q} ={f: fis a continuous function [0,T] — RL,, f(0) = Sy},

Fo=F°, and F = Fr. Suppose moreover that \' > 0 for any i. Then the model
(Q, F, A) satisfies the NGA condition.

Proof. Fix D € F\ {0}. Take wy € D. Consider the function ¢(t) = Si(wy). Fix
i €{1,...,d} and set A" = inf, (o4 S}(wo). We can find points 0 =tg < --- <ty =T
such that

1Si(wo) — St (wo)| < NA/3 form=0,..., M =1, t € [ty tyss).

Then the function ¢¢ defined as (1—\"/2)¢(t,,) for t € [tm, tmy1) is piecewise constant,
"(0) = Sp(wo), and

(1— X' () <Y(t) < p'(t), i=1,...,d, t€][0,T]. (5.2)

Set () = (Y(t),...,v%t)) and take wjy €  such that S;(wj) = 9(t). The reason-
ing used in the proof of Proposition 5.1 shows that there exist wi,...,w! € Q and
o, ..,y € Ry such that 3" o, = 1 and S is a martingale with respect to the
measure Qp =Y -, )\kéw;c. Set wy =wj, k=1,...,m. Consider an arbitrary element

d
X=> N [-HIH,>0)S, — HI(H, <0)(1-\)S, ] €A
Set
> [-HI(H] > 0)S, — H,I(H} <0)8, ].
In view of (5.2), X (wp) < Y (wf), and hence,

ZakX wk) < CV[)Y wo +ZOékX wk S Z wk = EQOY
= k=1 k=0

Using the fact that S is an (F;, Qp)-martingale and employing the representation
v 33 () s -6
n=1 =1

we conclude that Eq,Y = 0 (note that Qg is concentrated on a finite set of points).
Thus, the measure Q = Y ;" ; a0, belongsto R. Moreover, Q(D) > 0. An application
of Theorem 3.6 completes the proof (Assumption 3.5 is satisfied in this model; see [3;
Lem. 3.1)). O

6 Model with European Call Options as Basic As-
sets

We will consider a model with no transaction costs (its probability version was discussed
in [3; Sect. 6]). Thus, we are given a possibility space (2, F) and T € [0,00). Let St
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be an R, -valued F-measurable function. From the financial point of view, St is the
price of some asset at time 7. Let K C R, be the set of strike prices of European call
options on this asset with maturity 7" and let ¢(K), K € K be the price at time 0 of
a European call option with the payoff (Sr — K)*. The set of attainable incomes is
defined as

= {zN:hn((ST - K,) " —¢(K,):NeN, K, €K, h, € R}.

We assume that 0 € K, which means the possibility to trade the underlying asset.
Consider Zy; = Sr — ¢(0). Then, for any Q € R(Z;) and any X € A, we have
Eq|X| < 0o and EqX = 0. Thus, Assumption 3.5 is satisfied.

This model will be studied in two (most important) cases:

1. the case, where K =R, ;

2. the case, where K is finite.

Propositions 6.1 and 6.2 show that in case 1 the NGA condition is not satisfied in
most natural situations, while in case 2 the NGA condition is satisfied in most natural
situations.

Below ', denotes the right-hand derivative and ¢” denotes the second derivative
of a convex function ¢ : R, — R, taken in the sense of distributions (i.e. ¢"((a,b]) =
¢’ (b) — ¢’ (a)) with the convention: ¢"({0}) = ¢/, (0) + 1 (thus, ¢” is a probability
measure provided that ¢’ (0) > —1).

Proposition 6.1. Let K =R, . Then the model (2, F, A) satisfies the NGA con-
dition if and only if
(a) ° is conver;
(b) ¢ (0) > —1;
c) hrn:,;_)oo o(x) =0;
)
) ¢

(

(d) the set C':= {ST( ) :w € Q} is countable;
(e) ¢" is concentrated on C'

(f) ¢ ({«’B})>0f07’anyx60

Proof. Step 1. Let us prove the “only if” implication. If the NGA is satisfied,
then (by Theorem 3.6), for any a € C, there exists a risk-neutral measure Q such that
Q(St =a) > 0. We have

Eq(Sr — K)" = ¢(K), KeR,,

which immediately implies (a)—(c). Furthermore, it follows that Lawq Sr = ¢”. In
particular, ¢”({a}) = Q(Sr = a) > 0, which yields (f), and (f) leads to (d). Employing
once more the property Lawq Sy = ¢”, we get (e).

Step 2. Let us prove the “if” part. Let aj,as,... be a numbering of C'. Find
Wi, ws, ... such that Sr(w;) = a; and consider the measure Q = ). ¢"({a;})d,,. Then

Lawg St = 3 ¢"({a})d,, = .

Hence,
Eq(Sr — K)* = / (2 — K)*o"(de) = p(K), K R,

which means that Q is a risk-neutral measure. Furthermore, Q(Sr = a) = ¢"({a}) > 0
for any a € C'. By Theorem 3.6, the NGA is satisfied. O
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Proposition 6.2. Suppose that K is finite, 0 € K, and {Sr(w) : w € Q} =Ry, .
Then the model (Q, F, A) satisfies the NGA condition if and only if

(a) o is strictly positive on K;
( ) @ is strictly conver on K;
(¢c) ¢ is strictly decreasing on K;
(d)

o(x) > (0)—z,x€K\{0}.

Proof. Step 1. Let us prove the “only if” implication. If the NGA is satisfied, then,
for any a € R, there exists a risk-neutral measure Q such that Q(Sr =a) > 0. The
function ¢(x) := Eq(Sr— )", © € R, is positive, convex, decreasing, 1(x) > ¥ (0) —
for any = € Ry, ¢’ has a jump at the point a, and ¢ coincides with ¢ on K. This
yields (a)—(d).

Step 2. Let us prove the “if” part. Fix a € R,,. We can find a piecewise lin-
ear function 1 : Ry — Ry such that 1 is convex, ¢/, (0) = —1, lim, ,¢(z) = 0,
" ({a}) > 0, and 9 coincides with ¢ on K. The measure 9" is concentrated on a
countable set {ai,as,...,}. Find w; such that Sy(w;) = a; and consider the measure

Q=3 ¢"({ai})d,,. Then
Eq(Sr— K)" =9¢(K) = p(K), K€K,

which means that Q is a risk-neutral measure. Furthermore, Q(Sy = a) = ¢"({a}) > 0.
By Theorem 3.6, the NGA condition is satisfied. O
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