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Abstract. In this paper we apply the general framework introduced in [2] to
two models with transaction costs:

e a dynamic model with an infinite number of assets;
e a model with European call options as basic assets.

In particular, it is proved that a dynamic model with an infinite number of assets
satisfies the No Generalized Arbitrage condition (this notion was introduced in [2])
if and only if there exist an equivalent measure and a martingale with respect to
this measure that lies (componentwise) between the discounted ask and bid price
processes. Furthermore, the set of fair prices of a contingent claim coincides with
the set of expectations of the payoff with respect to these measures.

Our approach to arbitrage pricing in models with transaction costs differs from
the existing ones.
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1 Introduction

1. Purpose of the paper. Models with transaction costs have recently attracted
much attention in the financial mathematics literature. Let us mention, in particular, the
papers [4], [6], [12], [13], [14], [15], [16], [17], [19], [22] dealing with arbitrage pricing in
such models. These papers differ in the level of generality, conditions imposed on price
processes, definition of a strategy, definition of a price, and the form of representation of
results.

In the paper [2], we introduced a unified approach to pricing contingent claims through
a new concept of generalized arbitrage. (The necessary definitions and statements from [2]
are collected in Section 2.) In the framework of a general arbitrage pricing model, we
proved in [2] the fundamental theorem of asset pricing and established the form of the
fair price intervals. The general approach of [2] allows one to consider in a simple and
unified manner various models of arbitrage pricing theory, some of which have so far been
investigated separately and by different techniques. These include

e static as well as dynamic models;



e models with an infinite number of assets;
e models with transaction costs.

The purpose of this paper is to “project” the general results of [2] on two models with
transaction costs.

2. Dynamic model with an infinite number of assets. This model is considered
in Section 3. In order to apply the general results of [2], one only needs to establish the
structure of the set of equivalent risk-neutral measures (see Definition 2.3). We prove that
an equivalent measure Q is a risk-neutral measure if and only if there exists a Q-martingale
that lies componentwise between the discounted ask and bid price processes. Then the
general results of [2] show that the absence of generalized arbitrage (see Definition 2.2) is
equivalent to the existence of such a measure, while the set of fair prices of a contingent
claim coincides with the set of expectations of its payoff with respect to the class of these
measures.

Our approach to arbitrage pricing in dynamic models with transaction costs is dif-
ferent from the approaches of all the papers mentioned above. First of all, our model is
completely general in the sense that we consider an arbitrary €2, the continuous-time case
(so that the discrete-time case is covered as well), and arbitrary (not only proportional)
transaction costs. There are no assumptions on the probability structure of price evolu-
tion (like the assumption that the price is a geometric Brownian motion). We consider a
model with an arbitrary number of assets, while all the above mentioned papers consider
only a finite number of assets. An important conceptual difference between our model and
the majority of models mentioned above is as follows. In most of the above mentioned
papers a contingent claim is modeled as a multidimensional vector (its i-th component
means the amount of the assets of type i obtained by a holder of the claim). In contrast,
here we use the monetary representation, i.e. we consider a contingent claim as a one-
dimensional random variable. Another important distinctive feature of our approach is
that the price of a contingent claim is defined not through sub- and superreplication, but
directly through the No Generalized Arbitrage condition (see Definition 2.7).

In most aspects mentioned above, our model is similar to the model of Jouini and
Kallal [12], but there is a number of essential differences between the two models. The
approach of Jouini and Kallal might be considered as a “transaction costs’ extension”
of the approach of Harrison and Kreps [8], while our model is the “transaction costs’
projection” of the general arbitrage pricing model introduced in [2]. The most important
difference between our approach and the approaches of [8] and [12] is that these papers
employ the L?-setting (in particular, the price processes and the capital processes are
assumed to be square-integrable and the densities dQ/dP or risk-neutral measures should
also be square-integrable), while we employ the L°-setting.

We also study in our framework the convergence of the fair price intervals of a European
call option (St — K)* in the Black—Scholes model with proportional transaction costs as
the coefficient of transaction costs tends to zero. It is shown that the fair price interval
tends to the trivial one, i.e. to ((Sy — K)*,Sy). Although our framework differs from
the existing ones, this result agrees with the results of [5], [20], and [24], where the same
problem was considered. The financial interpretation is as follows: in the model under
consideration, the fair price interval obtained by dynamic hedging coincides with the fair
price interval obtained by static hedging.

3. Model with European call options as basic assets. This model is considered
in Section 4 (it is again a particular case of the general arbitrage pricing model). We



provide a simple geometric representation of the class of risk-neutral measures. The fric-
tionless variant of this model is very popular in financial mathematics (see, in particular,
[1], [10]) and was analyzed in [2; Sect. 6] within our general framework. The main idea of
considering such models is that taking into account the market prices of traded derivatives
enables one to narrow considerably fair price intervals.

Acknowledgement. 1 am thankful to the anonymous referee for a very careful
reading of the manuscript and important suggestions.
2 Generalized Arbitrage
Here we recall some basic definitions and facts from [2].

Definition 2.1. A general arbitrage pricing model is a quadruple (2, F,P, A), where
(Q, F,P) is a probability space and A is a convex cone in the space of all random variables.

From the financial point of view, A is the set of all discounted incomes that can be
obtained by trading a certain amount of assets. In the frictionless models, A is a linear
space. In the models with transaction costs, A is a cone.

Notation. (i) Set

B= {Z € LY : there exist (X,)nen € A and a € R

(2.1)
such that X,, > a P-a.s. and Z = lim X, P—a.s.}.
n—oo
(ii) For Z € B, denote 7(Z) =1 — essinf,cq Z(w) and set
A ={X-Y:XeA Yell}
X
Ay(Z) = ———+: X € Ay ¢,
)~ { 5y Y (22)

A3(Z) = Ay(Z) N L™,
A4(Z) = closure of A3(Z) in (L™, L'(P)).

Here LY is the set of R, -valued elements of L°; L™ is the space of bounded elements
of L o(L*>, L*(P)) denotes the weak topology on L* induced by the space L'(P) of
the P-integrable random variables on (€2, F,P).

Definition 2.2. A model (2, F,P, A) satisfies the No Generalized Arbitrage (NGA)
condition if for any Z € B, we have A4(Z) N LY = {0}.

Definition 2.3. An equivalent risk-neutral measure is a probability measure Q ~ P
such that EQX~™ > EqX™ for any X € A (we use the notation X~ = (—X) Vv 0,
X =XVO0). The expectations EQX~ and EQ X" here may take on the value +oc. The
set of equivalent risk-neutral measures will be denoted by R.

Notation. For Z € B, we will denote by R(Z) the set of the probability measures
Q ~ P with the property: for any X € A such that X > —aZ — [ P-a.s. with some
a, € Ry, we have Eq|X| < o0 and EqX < 0.



Lemma 2.4. For any Z € B, we have R C R(Z).

Assumption 2.5. There exists Zy; € B such that R = R(Z,) (in particular, both
sets might be empty).

Theorem 2.6 (Fundamental theorem of asset pricing). Suppose that Assump-
tion 2.5 is satisfied. Then the model (2, F,P, A) satisfies the NGA condition if and only

if there exists an equivalent risk-neutral measure.

Now, let F' be a random variable on (€2, F,P) meaning the discounted payoff of a
contingent claim.

Definition 2.7. A real number z is a fair price of F if the extended model
(Q,F,P,A+ {h(F — z) : h € R}) satisfies the NGA condition. The set of fair prices
of F will be denoted by I(F).

Theorem 2.8 (Pricing contingent claims). Suppose that the model (Q,F,P,A)
satisfies Assumption 2.5 and the NGA condition, while F' is bounded below. Then

I(F) = {EqF : Q € R}.

The expectation EqQF here is taken in the sense of finite expectations, i.e. we consider
only those Q, for which EqF < oo.

Let us illustrate the setup introduced above by a static model with a finite number of
assets.

Example 2.9. Let (Q,F,P) be a probability space. Let Sg, S € R¢ and S¢, S
be R?-valued random vectors. From the financial point of view, S% (resp., S) is the
discounted ask (resp., bid) price of the i-th asset at time n (so that S¢ > S? componen-
twise). Define the set of attainable incomes by

d
4= {Z[gi(si” = Sg0) + WS+ 8] g b € Ry }

=1

Then the NGA condition is equivalent to the traditional No Arbitrage (NA) condition
defined as: AN LY = {0}. (Consequently, the set of fair prices would remain unchanged
if we replaced the NGA condition in the definition of a fair price by the NA condition.)
Indeed, the implication NGA = NA is obvious, while the implication NA=-NGA is proved
as follows. Assume the NA condition and consider the measure P’ = ¢(|[S¢|| Vv ||S?]| v
1)~'P, where c is the normalizing constant. By the Kreps—Yan theorem (see [18] or [25]),
there exists a probability measure Q ~ P’ such that the density dQ/dP’ is bounded and
EQX <0 for any X € A. Then Q € R and, by Theorem 2.6, the NGA is satisfied
(note the proof of the implication R # ) = NGA in this theorem does not employ
Assumption 2.5). O



3 Dynamic Model with Infinite Number of Assets

Let (Q, F, (Fi)iepo,r], P) be a filtered probability space. We assume that Fy is P-trivial
and (F,;) is right-continuous. Let (S{*);cior) and (S}")sepor), ¢ € I be a family of real-
valued (F;)-adapted cadlag processes. From the financial point of view, S (resp., S{*)
is the discounted ask (resp., bid) price of the i-th asset at time ¢ (so that S¢ > S?
componentwise). Define the set of attainable incomes by

N
A= {ZZ[—H;I(H; >0)S% — HII(H < 0)S%]

n=0 icl

N €N, ug < --- < uy are (F;)-stopping times, H! is F, -measurable,

N
H,iL = 0 for all 7, except for a finite set, and ZHTZL = 0 for any z}

n=0

Here H! means the amount of the i-th asset that is bought at time u, (so that Y ,_, Hj}
is the total amount of the i-th asset held at time w,,).

Remark. Consider a model with no transaction costs (i.e. S* = S® = S). Then for
any i and any H’ such that Y.  H! =0, we can write
N N ,n—1
S =30 ) 5 - 5
n=0 n=1 “k=0

Thus, in this model the set A admits a simpler description:

N
A= {ZZH;(SZH —Si _):NE€N, uy<--- < uy are (F,)-stopping times,

n=1 i€l

H,iL is F,,,_,-measurable, and H}l = (0 for all 7, except for a finite set}.

We will assume that each process S* is positive. We will also suppose that, for any
i € I, there exists a constant 7' > 0 such that S% < 4/S%. Finally, we assume that,
for any ¢ € [0,T], there exists Y; € B (B is defined by (2.1)) with the property: for any
i € I, there exist o, 8 > 0 such that S < aY;+ 3 a.s. This assumption is automatically
satisfied in natural models.

Indeed, if I is finite, then the above assumption is satisfied with

Y, =) (S =55,
iel
If I is countable, then the above assumption is satisfied with
Yy = Z)\l(stb't o S(l)li)’
iel

where constants A’ > 0 are chosen in such a way that >, \'SP" < oo a.s. and
e A'SET < 0.

If S¥ is the discounted bid price process of a zero-coupon bond with maturity ¢, then
SY takes on values in [0, 1], and the above assumption is satisfied with Y; = 0.

i€l
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In order to get the fundamental theorem of asset pricing and to obtain the form of the
fair price intervals, it is sufficient to prove that Assumption 2.5 is satisfied and to find the
structure of risk-neutral measures. We call the corresponding statement the Key Lemma
of the section.

Notation. Set

M = {Q ~ P : for each i € I, there exists an (F;, Q)-martingale M"
such that, for any ¢ € [0,7], S” < M} < S Q-a.s.}.

Here M need not be cadlag.

Key Lemma 3.1. For the model (2, F,P,A), we have

RzR( Z&n) =M,

teQn[0,T]

where constants Ay > 0 are chosen in such a way that 3=, MYy < 00 a.s. and
Zte@ﬂ[U,T] Aessinf ,eq Vi(w) < 0o

The proof employs two auxiliary statements. The first of them was proved by Jouini
and Kallal [12; Lem. 3] (see Choulli and Stricker [3] for a related result). Actually, Jouini
and Kallal employ an additional assumption that X and Y are cadlag, but a slight
modification of their proof allows one to get rid of this assumption.

Lemma 3.2. Let X be a supermartingale and Y be a submartingale on a filtered
probability space (0, F, (Fy)ico,r), P) with a right-continuous filtration (X and Y are not
necessarily cadlag). Suppose that, for any t € [0,T], X; <Y; a.s. Then there ezists an
(F;) -martingale M such that, for any t € [0,T], X; < M; <Y} a.s.

We will also employ the following statement (see [11] or [23; Ch. II, § 1c¢]):

Lemma 3.3. Let (X,)n=0,..~ be an (F,)-local martingale such that E|Xy| < oo and
EXy <oo. Then X is an (F,)-martingale.

Proof of Key Lemma 3.1. Denote Zte@ﬂ[U,T] ANY; by Zg.

Step 1. The inclusion R C R(Z;) follows from Lemma 2.4.

Step 2. Let us prove the inclusion R(Z;) C M. Take Q € R(Zp). Fix ¢ € I and
(F;)-stopping times u < v. Let us prove that

Eq(SY | F,) < S%. (3.1)
For n € N, set
kT _((k-1T kT
k=1
" kT - T T
Up = k—1<(k ) <v_k—>
n n n

B
Il
—



Then, for any n < m and any D € F, such that S{jfn is bounded on D, we have
Uy < v, and . .
EaTp(SY — S11) <0,

which implies that . ‘
Eq(Sy | Fu,) < St (3.2)

As uy, decreases to u pointwise, we have F, C F, ., and (\~_, Fy,. = F, (see [21;
Ch. I, Ex. 4.17]). Therefore,

Eq(S7, | Fun) -2 Ba(SL | F2)
m— o0
(see [21; Ch. II, Cor. 2.4]) and (3.2) yields
Eq(Sy, | Fu) < 83

Applying the Fatou lemma for conditional expectations, we get (3.1).
Let us now prove that _ _
Eq(Sy" | Fu) > S (3.3)

For u,,, v, defined above and any D € F,, , we have

EqIp(=S. +5y.,) <0
(recall that S < ~¢S%). Thus,

Eq(Si! | Fun) > Sit-
Arguing in the same way as above, we get

Eq(SS! | ) > SV (3.4)
It follows that, for any (JF;)-stopping time v,
Syt <18 < VEQ(ST | Fo) < (4')’Eq(ST | Fo).

Using the inclusion Q € R(Z), it is easy to check that S5 is Q-integrable, and hence,
the collection (S5%)°2, is Q-uniformly integrable. Now, (3.3) follows from (3.4).
Consider the Snell envelopes

Xy = esssup EQ(SSzZ | ft)a te [OaT]a

TET:
Y; = essinf Eq(S%" | F), t€0,T),

TET:
where 7; denotes the set of (F;)-stopping times such that 7 > ¢. (Recall that esssup, &,
is a random variable £ such that, for any a, & > &, a.s. and for any other random variable
¢ with this property, we have £ < ¢ a.s.) Then X is an (F;, Q)-supermartingale, while
Y is an (F, Q)-submartingale (see [7; Th. 2.12.1]).

Let us prove that, for any ¢ € [0,7], X; <Y, Q-a.s. Assume that there exists ¢ such

that P(X; > Y;) > 0. Then there exist 7,0 € 7; such that

Q(EQ(ST | Fi) > Eq(S2" | -Tt)) > 0.



This implies that Q(¢§ > n) > 0, where £ = Eq(S¥ | F,rs) and 7 = Eq(S¥ | Frno)-
Assume first that Q({£ > n} N {r <o}) > 0. On the set {r < o}, we have

§: sz _ sz

TAO?

n= EQ(Sgi | .7:7/\0) = EQ(Sai\a | .7:7/\0)

and we obtain a contradiction with (3.3). Similarly, if we assume that Q({{ > n} N {r >
o}) > 0, then we arrive at a contradiction with (3.1). As a result, X; <Y; Q-a.s. Now,
an application of Lemma 3.2 shows that Q € M.

Step 3. Let us prove the inclusion M C R. Take Q € M. Then, for each i, there
exists an (F;, Q)-martingale M* such that, for any ¢ € [0,7], S < M} < S# Q-a.s. Fix

X = ZZ —HLI(H) > 0)S — HLI(H, < 0)S¥ ] € A,

n=0 iecl

Let (.7?,5) denote the Q-completion of (F;). The process M’ admits a cadlag (.7?,5)—
modification M* (see [21; Ch. II, Th. 2.9]). We have

N
X< S [-Hi(H], > 0)M! — HI(H < 0)M; ]
n=0 €Il

-y [ () o, - o))

n=1 iel

The process

ZZ[(Z%) M — DM 1)}, 1=0,....N

n=1 iel

is a Q-local martingale with respect to the filtration (F,). Now, it follows from
Lemma 3.3 that EqMy > EqM;;. Consequently, Eq X~ > EqX™. Asaresult, Qe R. O

Let us now consider a model with proportional transaction costs, i.e. a model with
S¥ = (1 — M) S%, where A\ € [0,1) is the coefficient of proportional transaction costs for
the i-th asset. We introduce the following definition.

Definition 3.4. An R, -valued process X is called an (F;, P)-delta-martingale of
order a, where a € (0,1] if

(a) X is (F;)-adapted and cadlag;

(b) EX, < 00, t € [0,T];

(c) for any (F;)-stopping times u < v, we have aX, < E(X, | F,) < a7 'X,.

It is seen from the proof of Key Lemma 3.1 that X is a delta-martingale of order a
if and only if there exists a martingale M such that, for any ¢ € [0,7], aX; < M; < X,
a.s. Consequently, in models with proportional transaction costs

R ={Q~P:foranyic I, Sis an (F;, Q)-delta-martingale of order 1 — \'}. (3.5)

Let us now study the following problem. Consider a one-dimensional model with the
coefficient A of proportional transaction costs and denote by I (F') the fair price interval

8



in this model. Is it true that I,\(F') W I(F), where I(F) is the fair price interval in the

model with no transaction costs (i.e. with A = 0)? This problem was considered for the
Black—Scholes model in the papers [5], [20], [24], and it was proved that the upper price
of a European call option (Sy — K)* tends to Sy as A | 0. Our approach to arbitrage
pricing in models with transaction costs is different from the one in the papers mentioned,
but the same result turns out to be true in our approach as well. Thus, the answer to the
question posed above is negative for natural continuous-time models.

Proposition 3.5. Let S, = Spet**7Bt  where n € R, 0 > 0, and B is a Brownian
motion. Let F;, = FP, S*=5, 8"=(1-M\N)S, F=(Sr— K)*. Then

L(F) > (S0~ K),50)
in the sense that the left (resp., right) endpoints of I\(F) tend to (Sq — K)* (resp., So)
as A} 0.

Proof. It is clear that I,(F') decreases as A | 0. Furthermore, using static consid-
erations (i.e. considering trades at dates 0 and T only), one can easily see that, for any
e > 0, there exists A > 0 such that I,(F) C ((So — K)* —¢&,Sy+¢). Thus, it will suffice
to prove that, for any A > 0,

I\(F) 2 ((So — K)*, Sp). (3.6)

Clearly, we can assume from the outset that Q = C([0,7]), S = X, where X denotes
the coordinate process (i.e. X;(w)=w(t)), and F, = F~.

Step 1. Let a > 0 and Z be a solution of the stochastic differential equation
dZt = —a Sgn(Zt — S())[(t S T)dt —+ O'thWt, Z() = S(],

where 7 = inf{t > 0: [Z;, — Sp[ > A}, A = AS5/10, and W is a Brownian motion. The
process Z is defined on a filtered probability space (2, F,(F;),P). Fix (F;)-stopping

times v < v. On the set {7 < u}, we have E5(Z, | F,) = Z,. On the set {7 > u}, we
have E5(Z, | Fu) = Es(Zuar | Fu)s | Zu — Sol < A, and | Zyp; — So| < A. Thus,

Es(Zo | Fu) > (1= NZu,  Es((1=NZ, | F) < Zu.
Now, set Q(a) = Law(Z;;t <T). Then, for any (F;)-stopping times u < v, we have
Eo)(Xo [ Fu) 2 (1 = M) X, Equ((1 = A) Xy [ Fu) < X,

Furthermore, Girsanov’s theorem guarantees that Q(a) ~ P. In view of (3.5), Q(a) is a
risk-neutral measure.
Let us prove that
lim Eq)F = (So — K)*. (3.7)

a— o0

For any b > 25, we have, by the Ito-Tanaka-Meyer formula,
t
1
(Z,—b)* = / 1(Z, > Do ZudW, + S IHZ), £20,
0

where LY(Z) denotes the local time spent by the process Z at the point b by the
time t. It follows from this representation that E(Zr — b)" < E(Z, — b)*, where

9



o=TI(t>T)+ (T +7)I(r <T). Using this inequality and the property that (Zp —
b)t =0 on {7 < T}, we can write

E(Zr —b)" <E(Zry, —0)"I(1<T,Z;, = So— A)+E(Zpyr —0)TI(7 <T,Z, = So+ A)
=E(YZ ™2 —b) P(r <T.Z = So— A) + E(Y"H —0) 'P(r < T, Z, = Sy + A),

where Y” is a solution of the stochastic differential equation
ay," = oY dW,, Y =ux.

It is seen from the inequality proved above that E(Zr — b)" converges to 0 uniformly in
a > 0 as b — oco. Furthermore, it is clear that Z; converge weakly to Sy as a — oc.
This yields (3.7).

Step 2. Let a,b,c> 0 and (Z, Z) be a solution of the system

dZ, = —a sgn(Zt — Et)f(t < T)dt +oZ dW,, Zy =Sy,
dZt = bgtd/wt, ZVO - SU;

where 7 = inf{t > 0 : |Z, — Z| > Aor Z, < ¢}, A = ASy/10, and W, W are
independent Brownian motions. The process (Z, Z) is defined on a filtered probability

space (0, F, (F,),P). Arguing in the same way as above, we check that, for any (F,)-
stopping times u < v,

E5(Z, | F) > (1= NZ0  Ea((1-NZ, | F) < 72,

provided that ¢ < Sy. Hence, the measure Q(a,b,c) = Law(Z;; t < T) is a risk-neutral
measure. Clearly, B
lim lim Law(Z; t <T) = Law(Zy; t <T),

cl0 a—oc

and therefore,

lim inf lim inf lim inf Eqq o) F > liminf E(Zp — K)* = lim E(Zy — K)* = S,.  (3.8)

b—oo cl0 a—00 b—oo b—o0

Relations (3.7) and (3.8) taken together yield (3.6). O

4 Model with European Call Options as Basic Assets

Let (€2, F,P) be a probability space and T € [0,00). Let Sy be an R, -valued random
variable. From the financial point of view, St is the ask price of some asset at time 7". For
simplicity, we consider only proportional transaction costs on the underlying assets, i.e.
the bid price of the i-th asset at time T is (1 — \)Sy, where A € [0,1). Let K C R, be
the set of strike prices K of traded European call options on this asset with maturity 7'.
Let ¢*(K) and ¢*(K), K € K be the ask and bid prices at time 0 of such an option.
Define the set of attainable incomes by

A= {Z[gn(((l — N)Sr = Kn)* = ¢“(Kn)) + ha(=(S — Kn) ™ + ¢"(K))] -

n=1

NeN K, €K gn,hne]&}.

10



We assume that 0 € K, which means the possibility to trade the underlying asset.

Notation. Set
M ={Q ~ P : Lawq St € D},

where

D = {¢": ¢ is convex on Ry, ¢, (0) > —1, lim ¢(z) =0,
T—00
P((L=N)7K) < (1= X0)'9"(K) and (K) > ¢"(K), K € K}.

Here ¢, denotes the right-hand derivative and ¢" denotes the second derivative taken in
the sense of distributions (i.e. ¢”((a,b]) = ¢', (b)—¢', (a)) with the convention: ¢"({0}) =
¢’ (0) + 1 (thus, ¢" is a probability measure provided that ¢, (0) > —1).

Key Lemma 4.1. For the model (2, F,P,A), we have
R =R((1 - A)Sr - ¢"(0)) = M.
Proof. Denote (1 — \)Sy — ¢*(0) by Z.
Step 1. The inclusion R C R(Z) follows from Lemma 2.4.
Step 2. Let us prove the inclusion R(Zp) C M. Fix Q € R(Z,). By considering the

function ¢(x) = Eq(Sr — )™, we conclude that Q € M.
Step 3. Let us prove the inclusion M C R. Fix Q € M with Lawgq Sy = ¢”. Then

EqlSr = K)" = [ (o= K)"¢(de) = o(K). K €Rs.

Consequently, EqX < 0 for any X € A, which means that Q € R. O

11



e (1-NK), K e Ry —
oK), K€ R, —

¢ (K), K € Ry —~

Figure 1.a. The structure of D in the case, where
K=R;. The set D consists of the second deriva-
tives ¢”, where ¢ is convex on Ry, ¢/ (0) > —1,
mlglgo w(z) =0, and ¢ lies in the shaded region.

-~

K

Figure 1.b. The structure of D in the case, where
K is finite. The set D consists of the second deriva-
tives ¢”, where ¢ is convex on Ry, ¢/, (0) > —1,
mhﬂrgl(} o(r) =0, and ¢ lies in the shaded region.
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