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Abstract. The purpose of this paper is to present a unified approach to
pricing contingent claims through a new concept of generalized arbitrage.

First, we prove the fundamental theorem of asset pricing and establish the
form of the fair price intervals within the framework of a general arbitrage pricing
model.

Furthermore, these results are “projected” on several models, including:

e a dynamic model with an infinite number of assets;
e a model with European call options as basic assets;
e a mixed model.

This leads us, in particular, to the revision of the fundamental theorem of asset
pricing for continuous-time models. Our variant of this theorem states that the
absence of generalized arbitrage is equivalent to the existence of an equivalent
measure, with respect to which the discounted price process is a true martingale.
In a model with the infinite time horizon, uniformly integrable martingales come
into play.

The general approach mentioned above allows us to narrow the fair price in-
tervals by taking into consideration the current prices of traded derivatives.
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1 Introduction

1. Purpose of the paper. In the fundamental work [22], Harrison and Kreps in-
troduced a general model of pricing by arbitrage. Their paper formed the basis of the
martingale approach to arbitrage pricing. However, there are some technical problems
inherent in their model. The main one descends from the assumption that the so-called
marketed contingent claims should belong to L? (the model proposed later by Kreps [32]
enables one to relax this assumption to the LP-integrability with p > 1). This restriction
is not very natural as shown by the example below.

Consider the following simple model for an asset’s (discounted) price evolution:
So=1, St =&, S = &n, where £ and 7 are independent random variables, each



taking on values 1/2 and 3/2 with probability 1/2 (S, means the discounted price of
some asset at time n). Let (F,)n—0,12 be a filtration such that F; is trivial, S is an
(F,)-martingale, and F; is rich enough, so that there exists an F;-measurable random
variable H that is not integrable. Then H(S;—S1) is a natural candidate for a marketed
contingent claim. However, it does not belong to L.

Further development of arbitrage pricing theory was mainly concentrated on dynamic
models with a finite number of assets, which may be viewed as particular cases of
the model proposed by Harrison and Kreps. Harrison and Pliska [23] introduced the
admissibility condition on the trading strategies as a substitute for the integrability
restriction described above. The fundamental theorem of asset pricing (FTAP) for a
discrete-time model was established in the papers [23] and [11] (alternative proofs were
given in [26], [29], [30], [35], [37], and [41]). The FTAP for a continuous-time model was
established in the papers [12] and [15] (another proof was given in [28]). In a series of
papers [15], [18], [19], and [31], the form of upper and lower prices of a contingent claim
in a continuous-time model was established. However, there are some serious problems
inherent in the mentioned approach to continuous-time models (these problems are
described in Examples 4.3, 4.4, 4.5, and especially in Example 4.6).

In this paper, we propose a general arbitrage pricing model that has the same spirit
as the model of Harrison and Kreps, but avoids the problems described above. This
approach allows us to consider in a simple and unified manner various models of arbitrage
pricing theory, some of which have so far been investigated separately and by different
techniques. These include

e static as well as dynamic models; (see Sections 4, 5);

e models with an infinite number of assets (in particular, this allows us to consider
models with traded derivatives as basic assets, which makes it possible to narrow
considerably fair price intervals — see Section 6);

e models with transaction costs (these are considered in the paper [5], which is a
continuation of this paper);

e combinations of various models (see Section 7).

In the paper [5], we extend our results to models with transaction costs. Our ap-
proach to these models turns out to be different from the existing ones. Furthermore, in
the paper [6], we introduce the possibility approach to arbitrage pricing, which enables
one to get rid of such a vague object as the original probability measure.

2. General arbitrage pricing model. A general arbitrage pricing model is a
quadruple (2, F,P, A), where (2, F,P) is a probability space and A (it is called the set
of attainable incomes) is a collection of random variables on (€2, F, P) meaning the set of
discounted incomes one can obtain by trading certain assets. For a model (2, F,P, A),
we introduce a notion of the No Generalized Arbitrage (NGA). The NGA condition
might be viewed as a strengthening of the No Free Lunch condition known in financial
mathematics (the necessity to strengthen the latter one is illustrated by Example 6.4).
Furthermore, we define an equivalent risk-neutral measure as a measure Q ~ P such
that EQX~ > EqX™ for any X € A (X~ and X' denote the negative part and the
positive part of X, respectively; the expectations EQ X, EQX™ here are allowed to
take on the value +00). Although the concept of a risk-neutral measure is a classical
concept of financial mathematics, this particular definition seems to be new. It turns
out to be very convenient as illustrated by considerations of Sections 4-7.

The first basic result of the paper is Theorem 3.6, which may be called the FTAP



for the general arbitrage pricing model. It states (under some assumption that is auto-
matically satisfied in the particular models considered below) that a model satisfies the
NGA condition if and only if there exists an equivalent risk-neutral measure.

Next we consider the problem of pricing contingent claims. We define a fair price of
a contingent claim F' (F' is a random variable on (€, F,P)) as a real number z such
that the extended model (Q, F,P, A4+ {h(F —x) : h € R}) satisfies the NGA condition.
The second basic result of the paper is Theorem 3.10. It states (under some natural
assumptions) that the set of fair prices of F' coincides with the interval {EqF : Q € R},
where R denotes the set of equivalent risk-neutral measures.

3. Particular models. Various models of arbitrage pricing can be viewed as
particular cases of the general model described above. In order to embed a particular
model into this general framework, one should

1. specify the set A of attainable incomes;

2. find out the structure of the set of equivalent risk-neutral measures (typically, the
risk-neutral measures in a particular model admit a simpler description than the
general definition of a risk-neutral measure).

Once this is done, Theorem 3.6 gives the necessary and sufficient conditions for the
absence of generalized arbitrage, while Theorem 3.10 yields the form of the set of fair
prices of a contingent claim.

When “projected” to a discrete-time model with a finite number of assets, our results
agree with the classical ones. Namely, the class of risk-neutral measures coincides with
the class of martingale measures, while our intervals of fair prices coincide with the
classical No Arbitrage intervals.

However, for continuous-time models (considered in Sections 4, 5), our results differ
from the traditional ones. First of all, it should be mentioned that, unlike discrete-
time models, the continuous-time models do not possess a unique universally accepted
approach to pricing by arbitrage. The two most well-known approaches are: the “L?-
approach” proposed by Harrison and Kreps [22] and the approach developed in a series
of papers [12], [15], [18], [19], [28], [31], and others. Our approach is different from the
“L%-approach” because we never impose any integrability restrictions on price processes
or trading strategies.

Let us now describe the differences between our approach and the second one men-
tioned above. First, we consider the model with an arbitrary number of assets, while
the traditional approach deals with a finite number of assets. Second, we consider only
simple (i.e. piecewise constant) trading strategies with no admissibility condition im-
posed. Third, our FTAP states that a model with a finite time horizon satisfies the
NGA condition if and only if there exists an equivalent measure, with respect to which
the discounted price process is a true martingale; a model with the infinite time horizon
satisfies the NGA condition if and only if there exists an equivalent measure, with re-
spect to which the discounted price process is a uniformly integrable martingale. This
is different from the traditional FTAP provided by Delbaen and Schachermayer [12],
[15] (another proof was given by Kabanov [28]), which states that a model satisfies the
No Free Lunch with Vanishing Risk (NFLVR) condition (defined through the general
predictable admissible strategies) if and only if there exists an equivalent measure, with
respect to which the discounted price process is a sigma-martingale (this class of pro-
cesses has been introduced by Chou [8] and Emery [17]). Let us also point out in this
connection that for the continuous-time model with a finite number assets, Sin [40] and



Yan [43] introduced some strengthenings of the NFLVR condition and proved that these
strengthenings are equivalent to the existence of an equivalent measure, with respect to
which the discounted price process is a true martingale. Thus, our FTAP agrees with
these results although our NGA condition is different from the variants of No Arbitrage
in these papers. Fourth, our definition of the interval of fair prices differs from the tra-
ditional one. We discuss in Section 4 the problems of the traditional theory of arbitrage
pricing that arise when one considers admissible strategies, sigma-martingale measures,
and traditional intervals of fair prices. These problems do not arise in our framework.
Furthermore, it turns out that, unlike the NFLVR property, the NGA property is pre-
served under a change of numéraire (see Theorem 4.8).

The intervals of fair prices provided by arbitrage considerations are known to be
unacceptably large in incomplete models. There are several ways to overcome this prob-
lem proposed by financial mathematics. One of them is to consider traded derivatives
as basic assets. Typically, this leads to models with an infinite number of assets, and
this often creates serious theoretical problems. Our approach can easily be applied to
models with an infinite number of assets, and the traded derivatives can be taken into
consideration as follows. The set A depends on the amount of traded securities that we
take into account; the set R depends on A; the interval of fair prices depends on R.
Diagrammatically,

Assets — A — R —— Interval of fair prices.

When the amount of assets taken into consideration is enlarged (i.e. more prices of
traded contracts are taken into account), the set A is enlarged, the set R is reduced,
and the sets of fair prices are reduced.

In Section 6, we consider a model, which takes into account traded European call
options on a fixed asset with a fixed maturity 7. It is shown that if options with all
positive strike prices are traded (of course, this is an idealized assumption, but it is
typical for the theory), then the risk-neutral measure is unique. As a corollary, the fair
price of a contingent claim depending only on the asset’s price at time T' (such are, for
example, binary options) is uniquely determined.

It should be mentioned that this model was first proposed by Breeden and Litzen-
berger [2] and is very popular in mathematical finance (a literature review on this model
is given in [25]). Our approach to this model is different from the existing ones. In par-
ticular, we establish the form of fair price intervals based on the NGA considerations,
while traditionally the fair price of a contingent claim in this model is derived by rep-
resenting the payoff as a combination of (a continuum of) European call options. This
trick requires the smoothness of the payoff function (for instance, binary options do not
satisfy this condition), while in our approach no smoothness or continuity requirements
are imposed.

The general approach introduced in Section 3 admits an easy procedure of the combi-
nation of models. The aim of this procedure is to narrow the sets of fair prices by taking
into consideration the current prices of a larger amount of traded contracts. Thus, the
models of Section 4-6 may be viewed as “building blocks” for constructing mixed mod-
els. An example is provided by Section 7, in which we consider a mixed static-dynamic
model. The “building blocks” are provided by the models of Sections 4 and 6. We show
that, for the mixed model, the set R consists of the equivalent martingale measures with
given marginals, i.e. the measures, with respect to which the discounted price process
is a martingale with preassigned marginal distributions. Such measures have recently
attracted attention in the literature (see [3], [4; Sect. 4.1], and [33]).
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2 Ordinary Arbitrage

In this section, we briefly describe the classical arbitrage pricing theory in a static model
with a finite number of assets. This material is well-known (for more details, one may
consult, for instance, [20; Ch. 1]).

The general arbitrage pricing model introduced in Section 3 may be regarded as the
infinite-dimensional version of the model of this section (with the definitions of arbitrage
and the definitions of fair prices appropriately reformulated).

Let (2, F,P) be a probability space. Let Sy € R? and S; be an R?-valued random
vector on (€, F,P). From the financial point of view, S is the discounted price of the
i-th asset at time n.

Consider the set

A= {ihi(sj—sg):hi GR}. (2.1)

From the financial point of view, A is the set of discounted incomes that can be obtained
by trading assets 1,...,d at times 0, 1.

Definition 2.1. A model (Q, F, P, Sy, S1) satisfies the No Arbitrage (NA) condition
if ANLY ={0} (LY denotes the set of Ry -valued random variables on (Q, F,P)).

Definition 2.2. An equivalent martingale measure is a probability measure Q ~ P
such that Eq|Si| < oo and EqS; = Sy. The set of equivalent martingale measures will
be denoted by M.

Notation. Set C = convsupp Lawp Sy, where “conv” denotes the closed convex
hull, “supp” denotes the support, and Lawp Sy is the distribution of S; under P. Let
C° denote the relative interior of C', i.e. the interior of C' in the relative topology of
the smallest affine subspace of R¢ containing C.

Theorem 2.3 (FTAP). For the model (2, F,P,Sy, S1), the following conditions
are equivalent:

(a) NA;

(b) Sp € C°;

(c) M #0.



Proof. Step 1. Let us prove the implication (a)=-(b). If Sy ¢ C°, then, by the
separation theorem, there exists a vector h € R? such that (h, (x — Sg)) > 0 for any
z € C and (h, (x—Sp)) > 0 for some x € C'. This means that (h, (S; —Sp)) >0 P-a.s.
and P((h,(S1 —Sy)) > 0) > 0. But this contradicts the NA condition.

Step 2. Let us prove the implication (b)=>(c¢). The set

E = {EQSl Q ~ P, EQ|51| < OO}

is convex, and the closure of E contains supp Lawp .S;. Consequently, £ O C°.
Step 3. Let us prove the implication (¢)=>(a). Take Q € M. Then EqX = 0 for
any X € A. This implies the NA condition. O

Now, let F' be a random variable on (€2, F,P). From the financial point of view, F
is the discounted payoff of some contingent claim.

Definition 2.4. A real number z is a fair price of F' if the model with d+ 1 assets
(Q,F,P,x,8¢,...,S¢ F,SL,..., 5% satisfies the NA condition. The set of fair prices
of F will be denoted by I(F).

Notation. Set D = Gonv supp Lawp(F,S;) and let D° denote the relative interior
of D.

Theorem 2.5 (Pricing contingent claims). Suppose that the model (2, F,P, Sy, S)
satisfies the NA condition. Then

I(F)=A{x:(z,5) € D°} = {EQF : Q € M}.

The ezpectation EQE' here is taken in the sense of finite expectations, i.e. we consider
only those Q, for which Eq|F| < occ.

This is a direct consequence of Theorem 2.3. O
Rd
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Figure 1. The joint arrangement
of I(F), V.(F), V*(F), and D°

Remark. Another way to define the fair price interval (which is commonly used in
financial mathematics) is as follows. We introduce the lower and the upper prices by

Vi(F') = sup{x : there exists X € A such that z — X < F P-as.},
V*(F) = inf{z : there exists X € A such that z + X > F P-as.},



and the fair price interval is defined as the interval with the endpoints V,(F) and
V*(F) (to be more precise, if V,(F) < V*(F), we consider the interval (V,(F),V*(F));
if V.(F) = V*(F), we consider the one-point interval {V,(F)}). One can easily check
that if the model (2, F,P, Sy, S;) satisfies the NA condition, then the interval of fair
prices defined this way coincides with the interval I(F) introduced above (a proof can
be found in [20; Th. 1.23]).

3 Generalized Arbitrage

Definition 3.1. A general arbitrage pricing model is a quadruple (9, F,P,A),
where (€, F,P) is a probability space and A is a convex cone in L° (L° is the space of
real-valued random variables on (2, F,P) considered up to indistinguishability). The
set A will be called the set of attainable incomes.

From the financial point of view, A is the set of discounted incomes that can be
obtained by trading a certain amount of assets. An example is provided by (2.1). In
the frictionless models, A is a linear space. In the models with transaction costs, A is
a cone.

Notation. (i) Set

B = {Z € L° : there exist (X,)nen € A and a € R
(3.1)
such that X,, > a P-a.s. and 7 = lim X, P—a.s.}.

n—oo

The elements of B might be regarded as generalized attainable incomes bounded below.
(ii) For Z € B, denote 7(Z) =1 — essinf,cq Z(w) and set

A ={X-Y:XeA Yell}

X
) = { g <)
A3(Z) =Ay(Z)N L™,

A4(Z) = closure of A3(Z) in o(L>, L*(P)).

(3.2)

Here L& is the set of R, -valued elements of L°; L™ is the space of bounded elements
of L%; o(L*>, L*(P)) denotes the weak topology on L* induced by the space L'(P) of
the P-integrable random variables on (€, F,P).

Definition 3.2. A model (Q, F, P, A) satisfies the No Generalized Arbitrage (NGA)
condition if for any Z € B, we have A4(Z) N L} = {0}.

Remarks. (i) Note that A,(Z)N L% = {0} if and only if A5(Z) N LS = {0}, where
As(2) ={(Z +v(2))X : X € A4(2)}. (3.3)

The elements of As(Z) might be regarded as generalized attainable incomes (i.e. one
can approximate the elements of A5(Z) by the elements of A;).

(i1) The existence of a generalized arbitrage opportunity means that there exist
Z € B, We L%\ {0} and generalized sequences (X))ren € A, (Ya)rea € LY, and
(ar)ren € Ry such that | Xy — Yy < ax(Z +v(2)), A € A and (X, —Y)) converges

7



to W in the sense that Eq(X, —Y)) — EQWW for any probability measure Q < P such
that EqZ < 0.

(iii) The NGA condition is similar to the No Free Lunch (NFL) condition intro-
duced by Kreps [32] in a different framework. The NFL condition can be defined in
our framework as: A4(0) N LY = {0}. One can also define the No Arbitrage (NA)
condition in our framework as: ANLY = {0}. The NGA condition is the strongest one:
NGA=NFL, NGA= NA.

Definition 3.3. An equivalent risk-neutral measure is a probability measure Q ~ P
such that EQX~ > EqX™ for any X € A (we use the notation X~ = (—=X) Vv 0,
Xt =X VO0). The expectations Eq X~ and EqX™ here may take on the value +oo.
The set of equivalent risk-neutral measures will be denoted by R.

Notation. For Z € B, we will denote by R(Z) the set of the probability measures
Q ~ P with the property: for any X € A such that X > —aZ — § P-a.s. with some
a,p € Ry, we have Eq|X| < co and EqX < 0.

Lemma 3.4. For any Z € B, we have R C R(Z).

Proof. Take Z € B, Q € R. It follows from the Fatou lemma that 7 is Q-
integrable. Thus, if X € A satisfies the inequality X > —aZ —  P-a.s with some
«,B € Ry, then EQX~ < oo. By the definition of R, EqX™ < EqQX~. As a result,
EQ|X|<OO and EQXSO O

The following basic assumption is satisfied in all the particular models considered
below.

Assumption 3.5. There exists Zy € B such that R = R(Z;) (in particular, both
sets might be empty).

Theorem 3.6 (FTAP). Suppose that Assumption 3.5 is satisfied. Then the model
(Q,F,P, A) satisfies the NGA condition if and only if there exists an equivalent risk-
neutral measure.

The proof is based on a well-known result of Kreps [32] and Yan [42] (its proof can
also be found in [37], [41], and other papers):

Lemma 3.7 (Kreps, Yan). Let C' be a o(L>,L'(P))-closed conver cone in L™
such that C D L*® (L™ is the set of negative elements of L) and C N LY = {0}.
Then there exists a probability measure Q ~ P such that EQX < 0 for any X € C.

Proof of Theorem 3.6. Step 1. Let us prove the “only if” implication. Take
Zy € B such that R = R(Zp). Lemma 3.7 applied to the o(L>, L'(P))-closed con-
vex cone Ay(Zp) yields a probability measure Qo ~ P such that Eq,X < 0 for any

X € A4(Zy). By the Fatou lemma, for any X € A such that #(ZO) is bounded below,

we have EQO#(ZO) < 0 (note that EQO#(ZO) Ac <0 for any ¢ > 0). Consider
the probability measure Q = m Qo, where ¢ is the normalizing constant (it exists
since Zy 4+ v(Zy) > 1). Then Q € R(Z;) = R.

Step 2. Let us prove the “if” implication. Take Q € R and Z € B. It follows from

the Fatou lemma that Z is Q-integrable. Consider the measure Q = ¢(Z + 7(2))Q,
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where ¢ is the normalizing constant. For any X € A such that - X~ is bounded below

+7(2)
by a constant —a (a € R, ), we have

Eq X < Eq(aZ + ay(2)) < oo,

and consequently,

X
Eg—— = cEQX < 0.
Z+y(z) T
Hence, EgX <0 for any X € Ay(Z). As aresult, Ay(Z) N LY = {0}. O

It is seen from the above proof that the implication R # () = NGA is true without
Assumption 3.5. The following example shows that this assumption is essential for the
reverse implication.

Example 3.8. Let (X{):c0,1] be a collection of independent Gaussian random vari-
ables with mean 1 and variance 1 defined on some probability space (Q,F,P). Let
F =o0(Xy;t€][0,1]) and

N
A= {Zhnth :NeN, t, €[0,1], hy, GR}.
n=1

Clearly, the only element of A that is bounded below is 0. Hence, the model
(Q, F,P, A) satisfies the NGA condition.

Suppose now that there exists an equivalent risk-neutral measure Q. Set p = %.
Note that F = Uco(Xy;t € C), where the union is taken over all the countable sets
C C [0,1]. Hence, there exists a countable set Cy C [0, 1] such that p is o(Xy;t € Cy)-
measurable. For any ¢ ¢ Cy, we have

EQXt = EP,OXt = EP,O . EpXt = EpXt =1.
As a result, there exists no equivalent risk-neutral measure. O

Now, let F' be a random variable on (€2, F,P) meaning the discounted payoff of a
contingent claim.

Definition 3.9. A real number z is a fair price of F if the extended model
(Q,F,P,A+ {h(F —x) : h € R}) satisfies the NGA condition. (From the financial
point of view, A+ {h(F — x) : h € R} is the set of discounted incomes that can be ob-
tained by trading the “original” assets as well as trading the contract F' at the price x.)
The set of fair prices of F' will be denoted by I(F).

Theorem 3.10 (Pricing contingent claims). Suppose that the model (2, F,P, A)
satisfies Assumption 3.5 and the NGA condition, while F is bounded below. Then

I(F) = {EqF : Q € R}.

The expectation EQF here is taken in the sense of finite expectations, i.e. we consider
only those Q, for which EQF < oc.



Proof. Step 1. Let x € I(F). Take Z, € B such that R = R(Z,). Set 7Z; =
Zy+ (F —z). Then Z, € B', where B’ is defined by (3.1) with A replaced by A’ :=
A+ {h(F —z): h € R}. Lemma 3.7 applied to the o(L>, L'(P))-closed convex cone
Al(Zy) (A4(Zy) is defined by (3.2)) yields a probability measure Qy ~ P such that
Eq,X < 0 for any X € A)(Z;). By the Fatou lemma, for any X € A’ such that
) is bounded below, we have EQOW() < 0. Consider the probability measure

X
Z1+v(Z1
Q = 77577 Qo, where ¢ is the normalizing constant (it exists since Z; +y(Z;) > 1).
Then Q € R(Z;) C R(Zy) = R. Moreover, Eq(z — F) < 0 and Eq(F — x) < 0 since
the random variables #{Zl) and ﬁ are bounded below. Thus, z = EqF.

Step 2. Now, let x = EqF', where Q € R. Take Z € B’. Choose an arbitrary
element Y = X +h(F—x) € A’ (here X € A) such that Y is bounded below. It follows
from the condition x = EQF' that Eq X~ < co. As Q € R, we have EqX < 0. This
implies that EQY” < 0. By the Fatou lemma, Z is Q-integrable. Consider the measure
Q = c(Z+~(Z))Q, where c is the normalizing constant. For any Y = X +h(F—z) € A’
such that #(Z) is bounded below by some constant —a (« € R, ), we have

EY ™ < Eq(aZ + ay(Z)) < .

Consequently, EqX~ < 0o, EqX < 0, and EqQY < 0. This means that EQZ+7( 7 < 0.

Hence, for any Y € A)(Z), we have EgY < 0. This implies that A}(Z) N L% = {0}.
As a result, x € I(F). O

Remarks. (i) Theorem 3.10 remains valid if the condition “F' is bounded below” is
replaced by the condition “F' is bounded above” (the proof remains the same).

(i1) Another way to define the fair price intervals could be as follows. We introduce
the lower and the upper prices by

Vi(F) = sup{x : there exists X € A such that x — X < F P-a.s.}, (3.4)
V*(F) = inf{z : there exists X € A such that z + X > F P-a.s.}, (3.5)

and the fair price interval is defined as the interval with the endpoints V,(F') and V*(F).
However, unlike the model of Section 2, in a general model the interval defined this way
might be larger than I(F') (see Example 6.5).

To conclude the section, we “project” our results on the model of Section 2.

Example 3.11. Consider the model of Section 2 and assume additionally that the
components of S; are bounded below. Then, clearly, the class of risk-neutral measures
coincides with the class of martingale measures. Consequently, the NGA turns out to
be equivalent to the NA and the fair price interval based on the NGA coincides with
the fair price interval based on the NA.

4 Dynamic Model with Finite Time Horizon

Let (0, F, (Fi)icjo.r1, P) be a filtered probability space. We assume that F is P-trivial.
Let (S})ieo,r7. @ € I be a family of real-valued (F;)-adapted cadlag processes. Here, I
is an arbitrary set (it might be finite or infinite). From the financial point of view, S! is
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the discounted price of the i-th asset at time ¢. Define the set of attainable incomes by

N
A= {ZZH;(SLTL —Si _):NE€N, ug <--- < uy are (F;)-stopping times,

n=1 i€l
H,iL is F,,_,-measurable, and H}l = 0 for all 7, except for a finite set}.
(4.1)

From the financial point of view, A is the set of discounted incomes that can be obtained
by trading assets from I on the interval [0, 7.

We will assume that each process S° is bounded below (most financial assets au-
tomatically satisfy this condition). Moreover, we assume that there exists Z, € B (B
is defined by (3.1)) with the property: for any i € I, there exist «, 5 > 0 such that
St < aZy+ 3 a.s. This assumption is automatically satisfied in natural models.

Indeed, if I is finite, then the above assumption is satisfied with

Zy=> (S5 —S5).

el

If I is countable, then the above assumption is satisfied with

Zy = Z)\i(S% - S,
iel
where constants A\’ > 0 are chosen in such a way that >, ; A\'S% < oo a.s. and
Y ier AUSE < o0,

If S is the discounted price process of some asset and S* is the discounted price
process of a European call option on this asset with maturity 7" and strike price 7, then
St = (Sr —i)*, and hence, the above assumption is satisfied with Zy = Sy — Sy (we
assume that the process S is included in the collection (S%);cz).

If S is the discounted price process of a zero-coupon bond with maturity ¢, then S?
takes on values in [0, 1], and the above assumption is satisfied with Z; = 0.

iel

In order to get the FTAP and to obtain the form of the fair price intervals, it is
sufficient to prove that Assumption 3.5 is satisfied and to find the structure of risk-
neutral measures. We call the corresponding statement the Key Lemma of the section.

Notation. Set M = {Q ~ P :for any i € I, S*is an (F;, Q)-martingale}.
Key Lemma 4.1. For the model (2, F,P,A), we have

R =R(Z) = M.
The proof employs the following statement (see [26] or [38; Ch. II, § 1c]):

Lemma 4.2. Let (X,)n=o,..~ be an (F,)-local martingale such that E|X,| < oo
and EXy < oo. Then X is an (F,)-martingale.

Proof of Key Lemma 4.1. Step 1. The inclusion R C R(Z) follows from
Lemma 3.4.

Step 2. Let us prove the inclusion R(Zy) C M. Take Q € R(Z,). Fix i € I. For any
u € [0,T7], the random variable S’ —S} is bounded below, and therefore, Eq(S!—S;) < 0.
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In particular, S° is Q-integrable. For any u < v € [0,T] and any D € F, such that
S¢ is bounded on D, the random variable Ip(S? — S!) is bounded below, and hence,
Eqlp(S:— Si) < 0. This proves that S’ is an (F;, Q)-supermartingale. It follows from
the assumption S < aZy+ 3 and the definition of R(Z,) that Eq(S% — S§) = 0. This
implies that Q € M.

Step 3. Let us prove the inclusion M C R. Take Q € M. Fix

N

n=1 i€l

The process

M, => "> Hi(S., -8, ), n=0,....N
k=1 i€l
is a Q-local martingale with respect to the filtration (F,,). Now, it follows from
Lemma 4.2 that EQ X~ > EqX ™. As a result, Q € R. O

Remark. If the NGA condition is satisfied, then each S? is an (F;, P)-semimartingale.
This follows from the fact that the semimartingale property is preserved under an equiv-
alent change of measure (see [27; Ch. III, Th. 3.13]).

For discrete-time models with a finite number of assets the approach proposed here
agrees with the classical one: the NGA condition is equivalent to the existence of an
equivalent martingale measure, which, in turn, is equivalent to the NA condition; the
interval of fair prices of a contingent claim that is bounded below coincides with the
classical one. However, for continuous-time models with a finite number of assets our
approach turns out to be completely different from the traditional approach developed
in [12], [15], [18], [19], [28], [31]. Let us briefly describe the latter one.

In the traditional approach, the discounted price process S is assumed to be an
R?-valued (F;, P)-semimartingale. The “set of attainable incomes” (although this term
is not used in the traditional approach) has the form

T
A= {/ H,dS, : H is an R?-valued (F,)-predictable S-integrable
0
process satisfying the admissibility condition, i.e. there exists (4.2)

t
a € R such that / H,dS, > a for any t € [O,T]}.
0

(Here fot H,dS, is the vector stochastic integral; its definition can be found in [27;
Ch. III, § 6¢] or [39]). Consider the sets

A ={X-Y:XeA Yell}
AQZAlﬂLOO,

A3z = closure of A, in the norm topology of L™.

The No Free Lunch with Vanishing Risk (NFLVR) condition is defined as: A3 N L} = {0}.
The traditional FTAP (see [15], [28]) states that a model satisfies the NFLVR con-
dition if and only if there exists an equivalent sigma-martingale measure, i.e. a measure
Q ~ P such that S is an (F, Q)-sigma-martingale. Recall that a process (X);cpo,r7 is
called a sigma-martingale if there exists a sequence of predictable sets (D,,),en such that

12



Traditional approach Proposed approach

The price process R¢-valued semimartingale | Infinite-dimensional pro-
cess with adapted, cadlag,
and bounded below com-
ponents

Trading strategies Predictable strategies sat- | Simple strategies with no
isfying the integrability | integrability and no ad-
and the admissibility con- | missibility conditions im-

ditions posed

The variant of the No || NFLVR NGA

Arbitrage condition

FTAP NFLVR <= existence | NGA <= existence of
of an equivalent sigma- | an equivalent martingale
martingale measure measure

Set of fair prices of a || (Vi.(F), V*(F)) I(F)

contingent claim

Table 1. The differences between the traditional
approach to asset pricing in the continuous-time
setting and the proposed approach

D,, C D11, U, D = 2x]0,T], and, for any n, the stochastic integral fo Ip, (s)dX isa
uniformly integrable martingale (this definition was proposed by Goll and Kallsen [21];
it is equivalent to the original definition of Chou [8] and Emery [17]). The class of
sigma-martingales contains the class of local martingales and is wider as shown by the
Emery example (see [17]). However, an R? -valued sigma-martingale is necessarily a
local martingale as shown by Ansel and Stricker [1].

The set of fair prices of a contingent claim F' is defined as the interval with the
endpoints V,(F) and V*(F'), where

Vi(F') = sup{x : there exists X € A such that z — X < F P-as.},
V*(F) = inf{z : there exists X € A such that x + X > F P-a.s.}

(here A is given by (4.2)). It follows from [15], [18], and [19] that if the NFLVR condition
is satisfied and F' is bounded below, then

V*(F) = sup EqQF, (4.3)
QEM,
where
M, ={Q ~ P: Sisan (F,Q)-sigma-martingale}. (4.4)

Let us now give 4 examples and 2 remarks, which illustrate the problems that arise
when one applies the traditional approach.
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The first two examples and the remark following them show that the admissibility
condition leads to an inadmissible restriction of the class of strategies (by a strategy we
mean a process H that appears in (4.2)).

Example 4.3. Consider the Black-Scholes model, i.e. S; = e#**Bt where B is a
Brownian motion. Let F, = F°, F = Fr. Then the strategy H = —1 is not admissible.
In other words, the admissibility condition prohibits in this model the strategy that
consists in the short selling of the asset at time 0 and buying it back at time 7. a

Example 4.4. Consider the exponential Lévy model, i.e. S, = eXt, where X is a
Lévy process. Let Fy = F, F = Fr. Suppose that the jumps of X are not bounded
from above (the majority of the exponential Lévy models used in the modern financial
mathematics satisfy this condition). One can check that if H is an admissible strategy,
then H(w,t) > 0 P X pr-a.e, where puy is the Lebesgue measure on [0,7]. In other
words, the admissibility condition prohibits in this model all the strategies employing
short selling. Clearly, this is an unacceptable restriction: for example, when hedging a
put option in practice, one employs strategies H with H < 0 (for more details, see [24;
Ch. 14]). O

Remark. Another drawback of the admissibility condition is as follows. Such a con-
dition is not imposed in the discrete-time models, but it is imposed in the continuous-
time models. This leads to an unpleasant unbalance. In particular, when one embeds a
discrete-time model into a continuous-time model, then the set of attainable incomes de-
fined for this continuous-time model by (4.2) does not coincide with the set of attainable
incomes defined for the original discrete-time model.

The next example shows that in some models the traditional interval of fair prices
is too wide.

Example 4.5. Let S, = I(t < T)+ &I(t = T), where £ is an R, -valued random
variable with the property: for any a > 0, P(( < a) > 0 and P(§ > a) > 0. Let
Fi = ff, F = Fr. Consider F' = St.

Let us find V,(F). Let H be a predictable admissible strategy and z € R be such
that

T
x —/ H,dS, < F. (4.5)
0

Note that .
/ H,dS, = HrASr = Hp(§ — 1).
0

Since H is (F;)-predictable and F, = {0,Q} for t < T', Hr is a real number. The
admissibility condition, together with the property P({ > a) > 0 for any a > 0, shows
that Hp > 0. This, combined with (4.5) and with the property P(¢ < a) > 0 for any
a > 0, yields < 0. Consequently, V,(F) = 0.

In a similar way one checks that V*(F) = 1. Thus, the interval of fair prices
provided by the traditional approach is [0,1]. On the other hand, the interval of fair
prices provided by common sense consists only of point 1 since F' can be replicated by
buying the asset (whose discounted price is S) at time 0. O
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Remark. In the model of the previous example, we have, due to the result of Ansel
and Stricker [1],

M, ={Q~P:Sisan (F,Q)-local martingale}

(M, is given by (4.4)). Furthermore, for any (F;)-stopping time 7, we have either
7=T P-as. or 7 <T P-a.s. Consequently,

M, ={Q~P:Sisan (F, Q)-martingale} = {Q ~ P : Eq{ = 1}.

Therefore, infqcy, EqF = 1. This shows that the equality Vi(F) = infgcy, EqF,
which is dual to (4.3), is not true for F' bounded below.

One way to overcome this problem was proposed in [15]. Namely, the authors of
that paper altered the definition of V,(F) and V*(F) by introducing the so-called w-
admissibility condition as a substitute for the admissibility condition. However, a weak
point of this definition is that it depends on the choice of a so-called weight function.

The fourth example is the most striking one. It shows that the use of the traditional
approach may lead to mispricing contingent claims.

Example 4.6. Let S, = |By|™', where B is a 3-dimensional Brownian motion
started at a point By # 0. Let F, = F°, F = Fr. Without loss of generality,
B2 = B} = 0. Note that

const

VT

We take T large enough, so that ESy < Sy (actually, ESy < Sy for any T > 0).
Consider F' = Sp.

Let us find V*(F). Applying It6’s formula and P. Lévy’s characterization theorem
(see [36; Ch. IV, Th. 3.6]), we conclude that

ESy = E((Bp)* + (B7)? + (B})?) V? < E((B})* + (B})*) /% =

t
Sy = So +/ S2dw,, te€[0,T), (4.6)
0

where W is an (F;, P)-Brownian motion. Furthermore, It6’s theorem (see [34;
Th. 5.2.1]) guarantees that (S,W) is a strong solution of stochastic differential equa-
tion (4.6), i.e. F° CFY. Tt is clear from (4.6) that F¥ C F7, and hence,
FV = F° = F. Set F, = E(F|F). By the representation theorem for the Brow-
nian motion (see [36; Ch. V, Th. 3.5]), there exists an (F;)-predictable W -integrable
process K such that

¢
F, = EF+/ K,dW,, tel0,T].
0
In view of (4.6),

tKu t
F, =EF + i ﬁdsu = EF+/0 H,dS,, te€]0,T]. (4.7)
Since F; > 0, the strategy H is admissible. Consequently, V*(F) < EF.
Similarly, by considering F}* = E(FI(F < n)|F;), we prove that V,(F) > EF. As
a result, the fair price provided by the traditional approach is EF' = ESy. On the other
hand, the fair price provided by common sense is Sy, which is not equal to ESy! O
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The problems described above do not arise in the approach proposed in this paper.

Indeed, no admissibility restriction is imposed in this approach, which solves the
problems described in Examples 4.3, 4.4, and the remark following Example 4.4.

In Example 4.5, we have, due to Theorem 3.10,

I(F) = {EqF : Q € M} = {EqF : Q ~ P, Eqé = 1} = {1},

which agrees with common sense.

By Theorem 3.10, the left endpoint of I(F') coincides with infqe, EqF for any F
bounded below, which solves the problem mentioned in the remark following Exam-
ple 4.5.

Finally, in Example 4.6, P is the only local martingale measure for S. Indeed,
if Q ~ P is a local martingale measure for S, then S satisfies equation (4.6) with
respect to Q. By Ito’s theorem (see [34; Th. 5.2.1]), there are strong existence and
pathwise uniqueness for this equation, and the Yamada-Watanabe theorem (see [36;
Ch. IX, Th. 1.7]) implies the uniqueness in law. Hence, Q = P. Since P is not a
martingale measure, there exists no equivalent martingale measure. This means that
the model considered in Example 4.6 does not satisfy the NGA condition, and the
paradox is solved.

Remark. An “arbitrage opportunity” in the model of Example 4.6 can be constructed
as follows. Consider the strategy G = H — 1, where H is given by (4.7). Then

T T
/ GudSu = / HudSu —Sr+ SO = —EpSy + SO > 0.
0 0

The strategy G is not admissible, so it does not yield a free lunch with vanishing risk
opportunity. It does not yield a generalized arbitrage opportunity either, but it can
be used to construct a generalized arbitrage opportunity as follows. There exist simple
strategies (H,)nen such that

t t
sup / HpudSy — / H,dS,| —— 0.
tef[0,7]]J o 0 n—00
Set
t o~
T = inf{t e [0,7]: / H,,dS, < —EpSy — 1},
0
Hpy=Hul(t<m,), tel0,T].
Since .
/ H,dS, > —EpSr, t€0,T],
0
we get

T T
/ H,,dS, —— | H,dS, = S; — EpSy.
0

n—o0 0

Set G,, = H, — 1. Then, for X, = fOT GrudS,, we have X, € A, where A is given
by (4.1). Furthermore, X, > —Sr + Sy — EpSy — 1 P-a.s. for any n € N and

X, —— Sy —EpSy > 0.
n—oe
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Note that Z := Sy — Sy belongs to B, where B is given by (3.1). Take Y,, € L}, n € N

such that
Xn =Y, X,

Z+v(2)  Z+~(Z)

A (So — EpSr),
and then
Xp =Y, o@=r'p) So— EpSr
Z+(Z) wow | Z43(Z)
This yields a generalized arbitrage opportunity in the model of Example 4.6.

One of the problems associated with the model under consideration is related to the
change of numéraire. 1t is as follows. Let S = (S},..., Sf)te[g’;p] be the price process of
d assets. We assume that each of its components is strictly positive. Fix a!,...,a¢ >0
with Y%, o/ > 0 and define a numéraire as the combination ¢ aS?. Now, define
the discounted price process as S = S/ Zgzl a'S? and define the set of attainable A
incomes by (4.1) or (4.2), depending on the choice of the approach. Now, let us choose
another combination Zle ('S* as a numéraire, define the new discounted process S as
S=5/ S %, 45" and define the set of attainable incomes A through S. The problem
is whether the NFLVR/NGA property holds or does not hold for the models (Q, F,P, A)
and (Q, F, P,g) simultaneously.

In the traditional approach, the answer is negative as shown by the example below
(it is borrowed from [13]). Let us mention in this connection the papers [14] and [16]
devoted to the study of conditions under which the NFLVR property is preserved under
the change of numéraire.

Example 4.7. Let S° =1 and S' = |B|™', where B is a 3-dimensional Brownian
motion started at a point By # 0. Let F, = fts, F = Fr. If we take S = S/S°, then
the model (Q, F,P, A) (A is defined by (4.2)) satisfies the NFLVR condition since the
process S! is a local martingale with respect to the orlglnal probablhty measure (see
representation (4.6)). On the other hand, if we take S = S/S', then S° = |B]| (this is
a 3-dimensional Bessel process). If Q is an equivalent sigma-martingale measure for §
then, by the result of Ansel and Stricker [1], S is an (F;, Q)-local martingale. Using
Ito’s formula, one easily checks that the quadratic variation of S is given by [So]t =1.
P. Lévy’s characterization theorem (see [36; Ch. IV, Th. 3.8]) now implies that SO i

a Q-Brownian motion. But this contradicts the positivity of SO, Hence, the model
(Q,F,P, A) does not satisfy the NFLVR condition. O

In contrast, the change of numéraire preserves the NGA property as shown by the
statement below.

Theorem 4.8 (Change of numéraire). Let A (resp., A) be defined through S
(resp., S) by (4.1). Then the models (Q,F,P, A) and (0, F,P, A) satisfy or do not
satisfy the NGA condition simultaneously.

The proof employs the following statement (see [27; Ch. III, Prop. 3.8]).

Lemma 4.9. Let (Q, F, (Fi)icor), P) be a filtered probability space and Q < P. Let

Zy = ZSJJ{: be the density process of Q with respect to P. Then a process M is an

(Fi, Q) -martingale if and only if MZ is an (F;, P)-martingale.
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Proof of Theorem 4.8.  Suppose that the model (Q, F,P,A) satisfies the NGA
condition. Then there exists a probability measure Q ~ P such that S is an (F:, Q)-
martingale. Let Z denote the density process of Q with respect to P. Consider the
process

4
- - ; i Qi
Z = 62722:15- -
D 'S

where the constant ¢ is chosen in such a way that Z, = 1. As §~is an (F;, Q)-

martingale, then, by Lemma 4.9, Z is an (Fi, P)-martingale. Hence, Z is the density
process of the probability measure Q= ZTP with respect to P (note that Q ~ P since
7 is strictly positive). As S is an (F;, Q)-martingale, then, by Lemma 4.9, the process
SZ = ¢S7Z is an (F;, P)-martingale, which (again by Lemma 4.9) implies that S is an
(F, (NQ)—martingale. Hence, the model (92, F,P, Z) satisfies the NGA condition. O

5 Dynamic Model with Infinite Time Horizon

Let (Q,F, (Fi)ier,,P) be a filtered probability space. We assume that F; is P-trivial.
Let (S})ier,. ¢ € I be a family of real-valued (F;)-adapted cadlag processes with
components bounded below. From the financial point of view, S! is the discounted
price of the i-th asset at time ¢. Define the set of attainable incomes by

N
A= {ZZH;(S;R — S, _)J:NEN, up <--- <uy are (F;)-stopping times

n=1 i€l

such that {uy = 0o} C {for any 1, Eltlim S,f}, H; is F,,_,-measurable, (5.1)
— 00

and H! = 0 for all 4, except for a finite set}.

Notation. Set
M={Q~P:foranyic I, S"isan (F;, Q)-uniformly integrable martingale}.

Key Lemma 5.1. Suppose that I is countable and, for any i, the limit S', =
limy ,o S exists P-a.s. Then, for the model (0, F,P, A), we have

R = R(Z N(SE — s@)) = M,
el

where constants \' > 0 are chosen in such a way that >, ; NSt < oo a.s. and

Yier ASE < o0

el

Proof. Note that (S})ier, is an (F;, Q)-uniformly integrable martingale if and only
if (S})ieo,00] i a (Gr, Q)-martingale, where

G — F, ifteR,,
T F ift=o0

(this statement follows from [36; Ch. II, Th. 3.1]). The desired statement can now be
proved in the same way as Key Lemma 4.1. a
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Since Key Lemma 5.1 contains an additional assumption, Theorem 3.6 cannot be
applied immediately, and the proof of the FTAP in this model requires a bit of additional
work.

Corollary 5.2. Suppose that I is countable. Then the model (Q, F,P, A) satisfies
the NGA condition if and only if there exists an equivalent uniformly integrable martin-

gale measure (i.e. M # ().

Proof. Step 1. Let us prove the “only if” implication. Lemma 3.7 applied to the
o(L*>, L'(P))-closed convex cone A4(0) yields a probability measure Q ~ P such that
EqX <0 for any X € A that is bounded below. For any ¢ € I, any v < v € R, , and
any D € F, such that S! is bounded on D, the random variable I (S:—S!) is bounded
below, and hence, EqIp(Si—S!) < 0. This shows that S is an (F;, Q)-supermartingale.
By Doob’s supermartingale convergence theorem (see [36; Ch. II, Th. 2.10]), the limit
limy ,o, S! exists Q-a.s., and hence, P-a.s. Now, Theorem 3.6, combined with Key
Lemma 5.1, yields the desired statement.

Step 2. Let us prove the “if” implication. Take Q € M. Then, by Doob’s theorem,
for any i € I, limy ;o S} exists Q-a.s., and hence, P-a.s. Now, Theorem 3.6, combined
with Key Lemma 5.1, yields the desired statement. O

It has been shown in the proof of Corollary 5.2 that the NGA condition implies the
existence of lim;_, S; P-a.s. Hence, Theorem 3.10 can be applied with no additional
assumptions.

It would be more natural to define the set of attainable incomes in this model as

N
A= {ZZH;(S;H — S ):NEN, uy<--- <uy < oo are (F)-stopping times,

n=1 i€l

H! is F, ,-measurable, and H’ = 0 for all i, except for a finite set}.

However, for this choice of A we can only establish the equality R = M (in the lemma
below, I is arbitrary), but we cannot prove that Assumption 3.5 is satisfied.

Lemma 5.3. For the model (Q, F,P,A), we have R = M.

Proof. Step 1. The inclusion M C R follows from the similar inclusion in Key
Lemma 5.1.

Step 2. Let us prove the inclusion R € M. Choose Q € R. Fix i € I. For any
u<veR, and D € F,, we have Eqlp(S! — S) =0 since S’ is bounded below.
Hence, S? is an (F;, Q)-martingale.

By Doob’s supermartingale convergence theorem, there exists a limit S! =
(a.s.)lim;_, Si. By the Fatou lemma for conditional expectations,

Eq(Si | F) < 8. t>0. (5:2)
In particular, EqS%, < Si.

Suppose that EqS’ < Si. The process X; = Eq(S%, | F;), t > 0 has a cadlag
Q-as.

modification. Furthermore, X; 7 Si.. Consequently, the stopping time
—00
, St — EQS!
T:inf{t20:|S;—Xt| < Uf"""}
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is finite Q-a.s. It follows from the inclusion Q € R and the positivity of S? that
EqS! = S¢. Thus,

St — EqSi

2

But this contradicts the equality EqX, = EqS’_, which is a consequence of the optional
stopping theorem for uniformly integrable martingales (see [36; Ch. II, Th. 3.2]). As a
result, EqS?, = Si. This, combined with (5.2), yields Eq(S%, | ) = Si, t > 0. The
proof is completed. O

EQX, > S} — > EqSL..

The traditional approach to the arbitrage pricing in dynamic models with the infinite
time horizon is the same as the one for continuous-time models with a finite time horizon.
The only difference is that the set of attainable incomes given by (4.2) should be replaced
by

A= {/ H,dS, : H is (F;)-predictable, S-integrable,
0

t
admissible, and such that lim H,dS, exists P—a.s.}.

t—o0 0

Here [°H,dS, = lim;_ fot H,dS,. (This might be called the improper stochastic
integral. Alternatively, one can use the stochastic integral up to infinity; see [7]. The
FTAP remains the same for these two types of integrals.)

Many models with the infinite time horizon that are arbitrage-free in the traditional
approach (i.e. satisfy the NFLVR condition for predictable admissible strategies) are
not arbitrage-free in the proposed approach (i.e. do not satisfy the NGA condition for
simple strategies). This is illustrated by the following example.

Example 5.4. Let S; = %=/ where B is a Brownian motion. Let F, = F7,
F = V5o F:- This model satisfies the NFLVR condition since the process S is a
martingale (and hence, a sigma-martingale) with respect to the original probability
measure. On the other hand, this model does not satisfy the NGA condition. Indeed,
consider the stopping time v = inf{¢t > 0 : S; = 1/2}. Then the random variable
=Sy +So = 1/2 belongs to the set A given by (5.1). Hence, the NGA condition is
violated.

From the financial point of view, the strategy providing generalized arbitrage in this
model consists in the short selling of the asset at time 0 and buying it back at time v.
Note that this strategy is prohibited in the traditional approach by the admissibility
condition. O

Remark. A “buy and hold” strategy consists in buying an asset, waiting until its
discounted price reaches some higher level, and selling it back at that time. The opposite
(it may be called “sell and wait”) strategy consists in the short selling of an asset, waiting
until its discounted price reaches some lower level and buying it back at that time. In
many models (like the one described above) such “sell and wait” strategies lead to
arbitrage opportunities. In the traditional approach, these strategies are prohibited by
the admissibility condition. In the approach proposed here, such strategies are allowed,
but the models, in which they yield arbitrage opportunities, are “prohibited” in the
sense that they do not satisfy the NGA condition. Indeed, if the NGA condition is
satisfied, then there exists an equivalent uniformly integrable martingale measure. But
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a uniformly integrable martingale with a strictly positive probability never reaches a
preassigned level, so that in models satisfying the NGA condition the “sell and wait”
strategy does not yield an arbitrage opportunity.

To conclude the section, we show that no “stationary” model with the infinite time

horizon satisfies the NGA condition. We say that a real-valued process Z has stationary
Law

increments if Zy p — Zsip = Zy— Zg forany s <te Ry, he R,.

Proposition 5.5. Let S; = Soe?t where Z has stationary increments and P(Z; #
Zy) > 0 for some t € R, . Then the NGA condition is not satisfied.

Proof. Suppose that the NGA condition is satisfied. Without loss of generality,
we can assume that P(Z; # Z;) > 0 for some t € R,. The reasoning used in the
proof of Corollary 5.2 shows that there exists lim;_,,, S; P-a.s. Hence, there exists
limy o Z; =: Zy P-a.s. (this limit takes on values in [—oo, 00)). Denote P(Z,, > —oc)
by p. Fix ¢ > 0 and find N € N such that N > 1/¢ and

P(Zy > —o0 and |Z, — Zy| < e forany n > N) > p —e.

Then
P(Zx > —o0 and |Zoy — Zn| < 2e) > p—e.

Since Zon — Zn faw Zn, we get P(|Zy| < 2e) > p—e. As £ can be chosen arbitrarily
small, we conclude that P(Z, = 0) = p. Hence, Z,, = 0 P-a.e. on the set {Z, > —oc}.
This means that Z,, takes on only values —oc and 0.

Take t € R, such that P(Z, # Z;) > 0. Choose a > 0 such that
P(|1Z, — Zy| > @) > 0. Forany T € Ry,

P(|Zrys — Z7| > ) = P(|Z, — Zo| > a) > 0.

Consequently, P(Zo = 0) < 1. Thus, S, takes on only values 0 and S,, and
P(Ss =0) > 0. Then M = (), and, by Corollary 5.2, the NGA condition is not satis-
fied. a

Corollary 5.6. Let S; = Spe?t where Z is a Lévy process that is not identically
equal to zero. Then the NGA condition is not satisfied.

6 Model with European Call Options as Basic As-
sets

Let (€2, F,P) be a probability space and T' € [0,00). Let St be an R, -valued random
variable. From the financial point of view, Sp is the price of some asset at time 7T'.
Let K C R, be the set of strike prices of European call options on this asset with
maturity 7' (in practice K is finite, but in theory it is often assumed that K = R, )
and let ¢(K), K € K be the price at time 0 of a European call option with the payoff
(St — K)™. Define the set of attainable incomes by

N
A= {Zhn((ST — K" —p(K,):NeN, K, €K, h, € R}.
n=1
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From the financial point of view, A is the set of discounted incomes that can be obtained
by trading at times 0 and 7" European call options on “our” asset with maturity 7'.
We assume that 0 € K, which means the possibility to trade the underlying asset.

Notation. Set
M:{QNPiLaWQSTGD},
where

D = {¢" : ¢ is convex on Ry, ¢/ (0) > —1, lim (z) =
T—>00
and P(K) = p(K), K € K}.
Here 1!, denotes the right-hand derivative and 1" denotes the second derivative taken

in the sense of distributions (i.e. ¢”((a,b]) = ¥/ (b) — ¥/ (a)) with the convention:
" ({0}) = ¢'.(0) + 1 (thus, ¢" is a probability measure provided that ¢ (0) > —1).

Key Lemma 6.1. For the model (2, F,P,A), we have
R =R(Sr — ¢(0)) = M.

Proof. Step 1. The inclusion R C R(St — ¢(0)) follows from Lemma 3.4.

Step 2. Let us prove the inclusion R(Sy — ¢(0)) € M. Fix Q € R(Sr — ¢(0)). By
considering the function ¢ (x) = Eq(S7 — z)™, we conclude that Q € M.

Step 3. Let us prove the inclusion M C R. Fix Q € M. Then

EolSr— K)" = [ (o= K)""(de) = 0(K) = p(K), K€K

Consequently, EqX = 0 for any X € A, which implies that Q € R. O
Recalling Theorems 3.6 and 3.10, we get

Corollary 6.2. Let K=R, .
(1) The NGA is satisfied if and only if

(a) go is conver;

(b) ¢ (0) = —1;

(c) hm,,[HOO o(x) =0;

(d) ¢" ~ Lawp St.

(ii) Suppose that the NGA is satisfied. Let F = f(Sr), where f is bounded below.
Then

I(F) = { R, f(x)w"(dx)} if - f(x)¢"(dx) < oo,

1] otherwise.

We conclude this section by three interesting examples. The first example shows
that the ordinary NA condition (which means that AN LY = {0}) is too weak for the
model under consideration.
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Example 6.3. Let K=R,,
1
P(Sre A) = 3 (I(l €A+ / e"’"dx), A€ B(Ry),
A

and ¢(K) = e ®. This model satisfies the NA condition. Indeed, suppose that there
exists

X =) ha((Sr— Kn)" = @(K,)) € A

such that X > 0 P-a.s. and P(X > 0) > 0. Note that X can be represented as
X = f(Sy) with a continuous function f: R, — R satisfying

RS /R (2 — K,)* — e=Kn)e=2da = 0. (6.1)

The above assumptions on X imply that f > 0 everywhere and f is not identically
equal to zero. But this contradicts (6.1). Thus, the NA condition is satisfied.

Consider now F = I(Sy = 1). For every ¢ > 0, consider the function f.(z) =
(1 — &'z —1])*. Tt is seen from the representation

1 2 1
fo(Sr) = Z(Sr=1+e)" = —(Sr =17+ ~(Sr —1-¢)"
that the random variables
X. = f.(S7) — fe(z)e ™ %dx
R+

belong to A and

X, + fe(x)e *dx > F.
Ry
As [ f(x)e “dr — 0, it is reasonable to conclude that the fair price of F' should
R+ el0

not exceed 0 (thus, the fair price should equal 0 since F is positive). But on the other
hand, P(F = 1) = 1/2, so that we obtain a contradiction with common sense. The
reason is that this model is not “fair” because one can construct “asymptotic arbitrage”
taking X, with € | 0. a

The second example shows that the NFL condition (see Remark (iii) following Defi-
nition 3.2) is also too weak for the model under consideration.

Example 6.4. Let K=R,, P(Sr <z)=1—-¢%, and p(K) = e * + 1. This
model satisfies the NFL condition. Indeed, let

X =) ha(Sr— Kn)" —o(Ky)) € A

be bounded below. Note that X can be represented as X = f(Sr) with a continuous
function f: R, — R satisfying



The assumption on X implies that 25:1 h, > 0. Then we can write

X< Zh ((Sr— —e %) =g(Sr) - /R g(x)e "dx = g(St) — Epg(Sr)

with g(z) = 2, hy, (v — K,)*. This implies that, for any X € A4(0) (A4(0) is defined
by (3.2)), we have Ep X < 0, so that the NFL condition is satisfied.

On the other hand, in this model the price of a European call option tends to 1 as
the strike price tends to +o0co, which contradicts common sense. Thus, this model is not
“fair” since one can construct “asymptotic arbitrage” by selling European call options
with the strike price K — +4o00. O

The third example shows that I(F) might not coincide with the interval, whose end-
points are V,(F) and V*(F) defined by (3.4) and (3.5). Thus, in general the proposed
approach to arbitrage pricing yields a finer interval of fair prices than the traditional
approach based on sub- and superreplication.

Example 6.5. Let K=R,, P(Sp <z)=1—¢"%, and ¢(K) = ¢ *. This model
satisfies the NGA condition since P € M. Choose D € B(R;) such that, for any
a<beRy, thesets DNJa,b] and [a,b] \ D have a strictly positive Lebesgue measure.
Consider F' = I(Sr € D).

Let us find V*(F) defined by (3.5). Let x € R and

N

X =) ha(Sr— Kn)t = o(Ky)) € A

n=1

be such that z + X > F P-a.s. We can write

X = g(Sr) Zh e~ = g(Sr) Zh / TeVdy = g(Sr) — /g(y)e‘ydy
R

+

with g(y) = 25:1 hn(y — Ky)*. Thus,
x+ g(Sr) — /R g(y)eYdy > I1(Sr € D) P-as.
+
Using the continuity of g and the properties of D, we get
x+g(z) — /R g(y)e ¥dy > 1 for any z € R,.
+

This implies that « > 1. Consequently, V*(F) = 1.
In a similar way one checks that V,(F') = 0. On the other hand, by Corollary 6.2 (ii),

= {fD e*ydy}.

7 Mixed Model

Let (0, F, (Fi)icpo.r1, P) be a filtered probability space. We assume that F is P-trivial.
Let (S¢)icor] be an Ry -valued (F;)-adapted cadlag process. From the financial point
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of view, S; is the (discounted) price of some asset at time ¢. Let ¢;(K) be the price
of a European call option on this asset with maturity ¢ and strike price K (we assume
that such an option exists for any ¢ € [0,7], K € R, ). Define the set of attainable
incomes by

M N
A= {Z Hpy(Sup = Sup ) + Z (S, — Kn) " = 0, (Kn)) :
m=1 n=1
M,N €N, ug < --- < uy are (F;)-stopping times,

H, is F, -measurable, h, € R, v, € [0,T], K, € R+}

From the financial point of view, A is the set of discounted incomes that can be obtained
by trading “our” asset on the interval [0,7] and trading European call options on this
asset.

Notation. Set
M={Q~P:Sisan (F;,Q)-martingale and Lawq S; = ¢}, ¢t € [0,T]}

provided that, for any ¢ € [0,77], the function ¢; is convex, (¢)! (0) > —1, and
lim, .o ¢ (2) = 0. Otherwise, we set M = ().

Key Lemma 7.1. For the model (2, F,P,A), we have
R =R(Str — So) = M.

Proof. Step 1. The inclusion R C R(Sy — Sp) follows from Lemma 3.4.

Step 2. Let us prove the inclusion R(Sr — Sy) € M. Take Q € R(St — So).
The proof of Key Lemma 4.1 (Step 2) shows that S is an (F;, Q)-martingale. For any
te0,T], K € R, we have

Eq(S:— So— (Si — K)" + ¢ (K)) =0

since the random variable under the expectation belongs to A and is bounded. By the
martingale property of S, Eq(S; — Sy) = 0, which implies that Eq(S; — K)T = ¢(K).
As a result, Q € M.

Step 3. Let us prove the inclusion M C R. Take Q € M. Fix

M N
X - Z Hm(Sum_ Sum—l) + Zh”((sﬂn_ KTL)+ - (vaL (Kn)) = Xl + X2 € A
m=1

n=1

Clearly, X, is Q-integrable and EqXy; = 0. The proof of Key Lemma 4.1 (Step 3)
shows that EqX; > EqX; . This leads to the inequality Eq X~ > EqQX . As a result,
QeR. O
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